Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Integr Neurosci ; 15: 777741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35197831

RESUMO

Sensorimotor control is modulated through complex interactions between descending corticomotor pathways and ascending sensory inputs. Pairing sub-threshold transcranial magnetic stimulation (TMS) with peripheral nerve stimulation (PNS) modulates the Hoffmann's reflex (H-reflex), providing a neurophysiologic probe into the influence of descending cortical drive on spinal segmental circuits. However, individual variability in the timing and magnitude of H-reflex modulation is poorly understood. Here, we varied the inter-stimulus interval (ISI) between TMS and PNS to systematically manipulate the relative timing of convergence of descending TMS-induced volleys with respect to ascending PNS-induced afferent volleys in the spinal cord to: (1) characterize effective connectivity between the primary motor cortex (M1) and spinal circuits, mediated by both direct, fastest-conducting, and indirect, slower-conducting descending pathways; and (2) compare the effect of individual-specific vs. standard ISIs. Unconditioned and TMS-conditioned H-reflexes (24 different ISIs ranging from -6 to 12 ms) were recorded from the soleus muscle in 10 able-bodied individuals. The magnitude of H-reflex modulation at individualized ISIs (earliest facilitation delay or EFD and individual-specific peak facilitation) was compared with standard ISIs. Our results revealed a significant effect of ISI on H-reflex modulation. ISIs eliciting earliest-onset facilitation (EFD 0 ms) ranged from -3 to -5 ms across individuals. No difference in the magnitude of facilitation was observed at EFD 0 ms vs. a standardized short-interval ISI of -1.5 ms. Peak facilitation occurred at longer ISIs, ranging from +3 to +11 ms. The magnitude of H-reflex facilitation derived using an individual-specific peak facilitation was significantly larger than facilitation observed at a standardized longer-interval ISI of +10 ms. Our results suggest that unique insights can be provided with individual-specific measures of top-down effective connectivity mediated by direct and/or fastest-conducting pathways (indicated by the magnitude of facilitation observed at EFD 0 ms) and other descending pathways that encompass relatively slower and/or indirect connections from M1 to spinal circuits (indicated by peak facilitation and facilitation at longer ISIs). By comprehensively characterizing the temporal profile and inter-individual variability of descending modulation of spinal reflexes, our findings provide methodological guidelines and normative reference values to inform future studies on neurophysiological correlates of the complex array of descending neural connections between M1 and spinal circuits.

2.
Microcirculation ; 28(3): e12671, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33171539

RESUMO

Microvascular networks are vital components of the cardiovascular system, performing many key roles in maintaining the health and homeostasis of the tissues and organs in which they develop. As discussed in this review, the molecular and cellular components within the microcirculation orchestrate critical processes to establish functional capillary beds, including organization of endothelial cell (EC) polarity, guiding investment of vascular pericytes (PCs), and building the specialized extracellular matrix (ECM) that comprises the vascular basement membrane (vBM). Herein, we further discuss the unique features of the microvasculature in the central nervous system (CNS), focusing on the cells contributing to the neurovascular unit (NVU) that form and maintain the blood-brain barrier (BBB). With a focus on vascular PCs, we offer basic and clinical perspectives on neurovascular-related pathologies that involve defects within the cerebral microvasculature. Specifically, we present microvascular anomalies associated with glioblastoma multiforme (GBM) including defects in vascular-immune cell interactions and associated clinical therapies targeting microvessels (ie, vascular-disrupting/anti-angiogenic agents and focused ultrasound). We also discuss the involvement of the microcirculation in stroke responses and potential therapeutic approaches. Our goal was to compare the cellular and molecular changes that occur in the microvasculature and NVU, and to provide a commentary on factors driving disease progression in GBM and stroke. We conclude with a forward-looking perspective on the importance of microcirculation research in developing clinical treatments for these devastating conditions.


Assuntos
Glioma , Acidente Vascular Cerebral , Barreira Hematoencefálica , Humanos , Microvasos , Pericitos
3.
Front Hum Neurosci ; 14: 592013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324184

RESUMO

The output from motor neuron pools is influenced by the integration of synaptic inputs originating from descending corticomotor and spinal reflex pathways. In this study, using paired non-invasive brain and peripheral nerve stimulation, we investigated how descending corticomotor pathways influence the physiologic recruitment order of the soleus Hoffmann (H-) reflex. Eleven neurologically unimpaired adults (9 females; mean age 25 ± 3 years) completed an assessment of transcranial magnetic stimulation (TMS)-conditioning of the soleus H-reflex over a range of peripheral nerve stimulation (PNS) intensities. Unconditioned H-reflex recruitment curves were obtained by delivering PNS pulses to the posterior tibial nerve. Subsequently, TMS-conditioned H-reflex recruitment curves were obtained by pairing PNS with subthreshold TMS at short (-1.5 ms) and long (+10 ms) intervals. We evaluated unconditioned and TMS-conditioned H-reflex amplitudes along the ascending limb, peak, and descending limb of the H-reflex recruitment curve. Our results revealed that, for long-interval facilitation, TMS-conditioned H-reflex amplitudes were significantly larger than unconditioned H-reflex amplitudes along the ascending limb and peak of the H-reflex recruitment curve. Additionally, significantly lower PNS intensities were needed to elicit peak H-reflex amplitude (Hmax) for long-interval facilitation compared to unconditioned. These findings suggest that the influence of descending corticomotor pathways, particularly those mediating long-interval facilitation, contribute to changing the recruitment gain of the motor neuron pool, and can inform future methodological protocols for TMS-conditioning of H-reflexes. By characterizing and inducing short-term plasticity in circuitry mediating short- and long-interval TMS-conditioning of H-reflex amplitudes, future studies can investigate supraspinal and spinal circuit contributions to abnormal motor control, as well as develop novel therapeutic targets for neuromodulation.

4.
Neuroscience ; 391: 73-80, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30223021

RESUMO

Downslope walking (DSW) causes H-reflex depression in healthy adults, and thus may hold promise for inducing spinal reflex plasticity in people with Multiple Sclerosis (PwMS). The study purpose was to test the hypothesis that DSW will cause acute depression of spinal excitability in PwMS. Soleus H-reflexes were measured in PwMS (n = 18) before and after 20 min of treadmill walking during three visits. Participants walked on a different slope each visit [level: 0% level walking (LW), upslope: +7.5% treadmill walking with an upslope (USW) or downslope: -7.5% (DSW)]. The soleus Hmax/Mmax ratio was used to measure spinal excitability. Heart rate and ratings of perceived exertion (RPE) were measured during walking. DSW induced the largest change in spinal excitability (a 26.7% reduction in soleus Hmax/Mmax (p = 0.001)), although LW also reduced Hmax/Mmax (-5.3%, p = 0.05). Heart rate (p < 0.001) was lowest for DSW, and RPE for DSW did not exceed "Fairly light". DSW evokes short-term spinal plasticity in PwMS, while requiring no greater effort than LW. Our results suggest that PwMS retain the capacity for DSW-induced short-term spinal reflex modulation previously found in healthy adults. These results may provide a foundation for further investigation of long-term effects of DSW on spinal reflex plasticity and functional ability in PwMS.


Assuntos
Reflexo H , Esclerose Múltipla/fisiopatologia , Músculo Esquelético/fisiopatologia , Caminhada , Adulto , Eletromiografia , Técnicas de Exercício e de Movimento/métodos , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/reabilitação
5.
Neurology (ECronicon) ; 10(8): 761-770, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31032493

RESUMO

OBJECTIVES: The Hoffman-reflex (H-reflex) is an electrophysiological technique used to evaluate the excitability of the monosynaptic spinal reflex arc. In individuals with upper motor neuron lesions who show elevated spinal excitability, a depression of spinal excitability may indicate adaptive spinal plasticity. Downslope walking (DSW), an exercise intervention comprising repetitive eccentric muscle activity, has been shown to induce depression of soleus H-reflex amplitudes while seated, however, the dose-response time-course of H-reflex modulation during DSW has not been characterized. The objectives of this study were twofold: (1) to evaluate DSW-induced soleus H-reflex depression in the standing posture and during walking, and (2) to investigate the effect of walking duration (20 minutes and 40 minutes) of DSW (-15% decline) on soleus H-reflexes, (with level walking (LW) as a control intervention). METHODS: Soleus H-reflexes were collected Pre, Post-20 minutes, and Post-40 minutes of walking in the standing position; and H-reflexes were also measured at 4 different time points during the terminal stance phase of walking. RESULTS: Our results showed that soleus H-reflexes evaluated in standing showed a greater % depression after DSW compared to LW, with a statistical trend for greater depression with longer durations (40-minutes). H-reflexes measured during walking showed greater depression after 40 minutes of walking compared to 20- or 30-minutes for both DSW and LW. CONCLUSIONS: Longer duration treadmill walking (40-minutes) may induce a greater acute depressive effect on soleus H-reflex excitability compared to shorter durations (20-minutes) of treadmill walking. Future work will investigate the potential for DSW as a gait training intervention in people with upper motor neuron lesions such as multiple sclerosis and stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...