Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37871052

RESUMO

We present aggregate query sculpting (AQS), a faceted visual query technique for large-scale multidimensional data. As a "born scalable" query technique, AQS starts visualization with a single visual mark representing an aggregation of the entire dataset. The user can then progressively explore the dataset through a sequence of operations abbreviated as P6: pivot (facet an aggregate based on an attribute), partition (lay out a facet in space), peek (see inside a subset using an aggregate visual representation), pile (merge two or more subsets), project (extracting a subset into a new substrate), and prune (discard an aggregate not currently of interest). We validate AQS with DATAOPSY, a prototype implementation of AQS that has been designed for fluid interaction on desktop and touch-based mobile devices. We demonstrate AQS and Dataopsy using two case studies and three application examples.

2.
IEEE Trans Vis Comput Graph ; 29(1): 74-83, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36166533

RESUMO

Data-centric AI has emerged as a new research area to systematically engineer the data to land AI models for real-world applications. As a core method for data-centric AI, data programming helps experts inject domain knowledge into data and label data at scale using carefully designed labeling functions (e.g., heuristic rules, logistics). Though data programming has shown great success in the NLP domain, it is challenging to program image data because of a) the challenge to describe images using visual vocabulary without human annotations and b) lacking efficient tools for data programming of images. We present Visual Concept Programming, a first-of-its-kind visual analytics approach of using visual concepts to program image data at scale while requiring a few human efforts. Our approach is built upon three unique components. It first uses a self-supervised learning approach to learn visual representation at the pixel level and extract a dictionary of visual concepts from images without using any human annotations. The visual concepts serve as building blocks of labeling functions for experts to inject their domain knowledge. We then design interactive visualizations to explore and understand visual concepts and compose labeling functions with concepts without writing code. Finally, with the composed labeling functions, users can label the image data at scale and use the labeled data to refine the pixel-wise visual representation and concept quality. We evaluate the learned pixel-wise visual representation for the downstream task of semantic segmentation to show the effectiveness and usefulness of our approach. In addition, we demonstrate how our approach tackles real-world problems of image retrieval for autonomous driving.

3.
IEEE Trans Vis Comput Graph ; 28(12): 4728-4740, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34347601

RESUMO

The widespread adoption of algorithmic decision-making systems has brought about the necessity to interpret the reasoning behind these decisions. The majority of these systems are complex black box models, and auxiliary models are often used to approximate and then explain their behavior. However, recent research suggests that such explanations are not overly accessible to lay users with no specific expertise in machine learning and this can lead to an incorrect interpretation of the underlying model. In this article, we show that a predictive and interactive model based on causality is inherently interpretable, does not require any auxiliary model, and allows both expert and non-expert users to understand the model comprehensively. To demonstrate our method we developed Outcome Explorer, a causality guided interactive interface, and evaluated it by conducting think-aloud sessions with three expert users and a user study with 18 non-expert users. All three expert users found our tool to be comprehensive in supporting their explanation needs while the non-expert users were able to understand the inner workings of a model easily.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...