Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(37)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38861936

RESUMO

Lithium-ion batteries (LIBs) have revolutionized portable electronics, yet their conventional graphite anodes face capacity limitations. Integrating graphene and 3D molybdenum disulfide (MoS2) offers a promising solution. Ensuring a uniform distribution of 3D MoS2nanostructures within a graphene matrix is crucial for optimizing battery performance and preventing issues like agglomeration and capacity degradation. This study focuses on synthesizing a uniformly distributed paper wad structure by optimizing a composite of reduced graphene oxide RGO@MoS2through structural and morphological analyses. Three composites with varying graphene content were synthesized, revealing that the optimized sample containing 30 mg RGO demonstrates beneficial synergy between MoS2and RGO. The interconnected RGO network enhances reactivity and conductivity, addressing MoS2aggregation. Experimental results exhibit an initially superior capacity of 911 mAh g-1, retained at 851 mAh g-1even after 100 cycles at 0.1 A g-1current density, showcasing improved rate efficiency and long-term stability. This research underscores the pivotal role of graphene content in customizing RGO@MoS2composites for enhanced LIB performance.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37922146

RESUMO

Considering the superior capacitive performance and rich redox kinetics, the two-dimensional (2D) layered molybdenum disulfide (MoS2) and transition metal nitrides (TMNs) have emerged as the latest set of nanomaterials. Direct incorporation of key materials vanadium nitride (VN) and tungsten nitride (W2N) into a MoS2 array has been achieved on cost-effective, bendable stainless steel (SS) foil via a reactive cosputtering route. Herein, we have utilized the synergistic effect of intermixed nanohybrids to develop a flexible asymmetric supercapacitor (FASC) device from MoS2-VN@SS (negative) and MoS2-W2N@SS (positive) electrodes. As-constructed FASC cell possesses a maximum operational potential of 1.80 V and an exceptional gravimetric capacitance of 200 F g-1 at a sweep rate of 5 mV s-1. The sustained capacitive performance mainly accounts for the synergism induced through unique interfacial surface architecture provided by MoS2 nanoworms and TMN conductive hosts. The sulfur and nitrogen edges ensure the transport channels to Li+/SO4-2 ions for intercalation/deintercalation into the composite nanostructured thin film, further promoting the pseudocapacitive behavior. Consequently, the supercapacitor cell exhibits a distinctive specific energy of 87.91 Wh kg-1 at 0.87 kW kg-1 specific power and a reduced open circuit potential (OCP) decay rate (∼42% self-discharge after 60 min). Moreover, the assembled flexible device exhibits nearly unperturbed electrochemical response even at bending at 165° angle and illustrates a commendable cyclic life-span of 82% after 20,000 charge-discharge cycles, elucidating advanced mechanical robustness and capacitance retentivity. The powering of a multicolor light-emitting diode (LED) and electronic digital watch facilitates the practical evidence to open up possibilities in next-generation state-of-the-art wearable and miniaturized energy storage systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...