Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 22(6): 1368-1381, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32406464

RESUMO

Quaternary ammonium compounds (QACs) are not completely removed during wastewater treatment and are frequently detected in surface waters and sediments. The photochemical transformation of QACs has not been thoroughly investigated as a potential degradation pathway affecting their fate in the environment. Kinetic studies of common QACs with and without aromatic groups under simulated and natural sunlight conditions were performed with model sensitizers and dissolved organic matter to estimate photochemical half-lives in the aquatic environment. All QACs investigated react with hydroxyl radicals at diffusion-controlled rates (∼2.9 × 109 to 1.2 × 1010 M-1 s-1). Benzethonium reacted via direct photolysis (ΦBZT,outdoor = 1.7 × 10-2 (mol Ei-1)). Benzethonium also reacted with the triplet excited state model sensitizer 2-acetylnaphthalene, but evidence suggests this reaction pathway is unimportant in natural waters due to faster quenching of the triplet 2-acetylnapthalene by oxygen. Reactivity with singlet oxygen for the QACs was minimal. Overall, reactions with hydroxyl radicals will dominate over direct photolysis due to limited spectral overlap of sunlight emission and QAC absorbance. Photolysis half-lives are predicted to be 12 to 94 days, indicating slow abiotic degradation in surface water.


Assuntos
Compostos de Amônio Quaternário , Poluentes Químicos da Água , Água Doce , Cinética , Fotólise , Rios
2.
Environ Sci Technol Lett ; 7(9): 622-631, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37566314

RESUMO

Quaternary ammonium compounds (QACs) are active ingredients in over 200 disinfectants currently recommended by the U.S. EPA for use to inactivate the SARS-CoV-2 (COVID-19) virus. The amounts of these compounds used in household, workplace, and industry settings has very likely increased, and usage will continue to be elevated given the scope of the pandemic. QACs have been previously detected in wastewater, surface waters, and sediments, and effects on antibiotic resistance have been explored. Thus, it is important to assess potential environmental and engineering impacts of elevated QAC usage, which may include disruption of wastewater treatment unit operations, proliferation of antibiotic resistance, formation of nitrosamine disinfection byproducts, and impacts on biota in surface waters. The threat caused by COVID-19 is clear, and a reasonable response is elevated use of QACs to mitigate spread of infection. Exploration of potential effects, environmental fate, and technologies to minimize environmental releases of QACs, however, is warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...