Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(2): e1011175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377115

RESUMO

Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.


Assuntos
Meiose , Prófase Meiótica I , Animais , Masculino , Camundongos , Alelos , DNA Helicases/genética , Reparo do DNA/genética , Meiose/genética , Prófase Meiótica I/genética
2.
bioRxiv ; 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37873301

RESUMO

During meiotic prophase I, recombination between homologous parental chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs), each of which must be repaired with absolute fidelity to ensure genome stability of the germline. One outcome of these DSB events is the formation of Crossovers (COs), the sites of physical DNA exchange between homologs that are critical to ensure the correct segregation of parental chromosomes. However, COs account for only a small (~10%) proportion of all DSB repair events; the remaining 90% are repaired as non-crossovers (NCOs), most by synthesis dependent strand annealing. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers. The number and positioning of COs is exquisitely controlled via mechanisms that remain poorly understood, but which undoubtedly require the coordinated action of multiple repair pathways downstream of the initiating DSB. In a previous report we found evidence suggesting that the DNA helicase and Fanconi Anemia repair protein, FANCJ (BRIP1/BACH1), functions to regulate meiotic recombination in mouse. A gene-trap disruption of Fancj showed an elevated number of MLH1 foci and COs. FANCJ is known to interact with numerous DNA repair proteins in somatic cell repair contexts, including MLH1, BLM, BRCA1, and TOPBP1, and we hypothesized that FANCJ regulates CO formation through a direct interaction with MLH1 to suppress the major CO pathway. To further elucidate the function of FANCJ in meiosis, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, a mutant line lacking the MLH1 interaction site and the N-terminal region of the Helicase domain, and a C-terminal 6xHIS-HA dual-tagged allele of Fancj. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, while Fanconi-like phenotypes are observed within the somatic cell lineages of the full deletion Fancj line, none of the Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I of meiosis. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 during late prophase I. Instead, FANCJ forms discrete foci along the chromosome cores beginning in early meiotic prophase I, occasionally co-localizing with MSH4, and then becomes densely localized on unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Strikingly, this localization strongly overlaps with BRCA1 and TOPBP1. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data suggest a role for FANCJ in early DSB repair events, and possibly in the formation of NCOs, but they rule out a role for FANCJ in MLH1-mediated CO events. Thus, the role of FANCJ in meiotic cells involves different pathways and different interactors to those described in somatic cell lineages.

3.
J Am Assoc Lab Anim Sci ; 58(2): 190-196, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30646968

RESUMO

Accidental exposure of our mice to bisphenol A (BPA) from damaged polycarbonate cages 20 y ago provided some of the first evidence of the harmful effects of exposure to this common chemical. Recently we found that housing mice in damaged polysulfone cages resulted in similar harmful effects due to exposure to bisphenol S (BPS). This problem was unexpected for 2 reasons. First, polysulfone is a far more chemically resistant polymer than polycarbonate. Second, BPS is not a component in the manufacture of polysulfone. We report here our efforts to verify the source of the BPS and eliminate the exposure. Our analysis of new polysulfone caging materials confirmed that BPS is a breakdown product of damaged polysulfone plastic. Furthermore, we found that BPS can cross-contaminate new or undamaged cages in facilities that process damaged caging materials. Neither the use of disposable cages nor replacement of caging materials used solely for our colony was sufficient to eliminate exposure effects. Only the replacement of all cages and water bottles in the facility corrected the problem and allowed us to resume our studies. Taken together, our previous and current findings underscore the concern that chemicals from plastics are harmful environmental contaminants for both humans and animals. Furthermore, our results provide strong evidence that the presence of damaged plastic in a facility may be sufficient to affect research results and, by exten- sion, animal health.


Assuntos
Abrigo para Animais , Plásticos/química , Animais , Exposição Ambiental , Humanos , Ciência dos Animais de Laboratório , Camundongos , Plásticos/toxicidade , Polímeros/química , Sulfonas/química
4.
Curr Biol ; 28(18): 2948-2954.e3, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30220498

RESUMO

20 years ago, accidental bisphenol A (BPA) exposure caused a sudden increase in chromosomally abnormal eggs from our control mice [1]. Subsequent rodent studies demonstrated developmental effects of exposure with repercussions on adult health and fertility (e.g., [2-9]; reviewed in [10-17]). Studies in monkeys, humans, fish, and worms suggest BPA effects extend across species (e.g., [18-30]; reviewed in [31-33]). Widespread use has resulted in ubiquitous environmental contamination and human BPA exposure. Consumer concern resulted in "BPA-free" products produced using structurally similar bisphenols that are now detectable environmental and human contaminants (e.g., [34-41]). We report here studies initiated by meiotic changes mirroring our previous BPA experience and implicating exposure to BPS (a common BPA replacement) from damaged polysulfone cages. Like with BPA [1, 2, 5], our data show that exposure to common replacement bisphenols induces germline effects in both sexes that may affect multiple generations. These findings add to growing evidence of the biological risks posed by this class of chemicals. Rapid production of structural variants of BPA and other EDCs circumvents efforts to eliminate dangerous chemicals, exacerbates the regulatory burden of safety assessment, and increases environmental contamination. Our experience suggests that these environmental contaminants pose a risk not only to reproductive health but also to the integrity of the research environment. EDCs, like endogenous hormones, can affect diverse processes. The sensitivity of the germline allows us to detect effects that, although not immediately apparent in other systems, may induce variability that undermines experimental reproducibility and impedes scientific advancement.


Assuntos
Poluentes Ambientais/efeitos adversos , Gametogênese/efeitos dos fármacos , Meiose/efeitos dos fármacos , Fenóis/efeitos adversos , Sulfonas/efeitos adversos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
PLoS Genet ; 13(8): e1006980, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28854188

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1006885.].

6.
PLoS Genet ; 13(7): e1006885, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28727826

RESUMO

The hypothesis that developmental estrogenic exposure induces a constellation of male reproductive tract abnormalities is supported by experimental and human evidence. Experimental data also suggest that some induced effects persist in descendants of exposed males. These multi- and transgenerational effects are assumed to result from epigenetic changes to the germline, but few studies have directly analyzed germ cells. Typically, studies of transgenerational effects have involved exposing one generation and monitoring effects in subsequent unexposed generations. This approach, however, has limited human relevance, since both the number and volume of estrogenic contaminants has increased steadily over time, intensifying rather than reducing or eliminating exposure. Using an outbred CD-1 mouse model, and a sensitive and quantitative marker of germline development, meiotic recombination, we tested the effect of successive generations of exposure on the testis. We targeted the germline during a narrow, perinatal window using oral exposure to the synthetic estrogen, ethinyl estradiol. A complex three generation exposure protocol allowed us to compare the effects of individual, paternal, and grandpaternal (ancestral) exposure. Our data indicate that multiple generations of exposure not only exacerbate germ cell exposure effects, but also increase the incidence and severity of reproductive tract abnormalities. Taken together, our data suggest that male sensitivity to environmental estrogens is increased by successive generations of exposure.


Assuntos
Epigênese Genética , Células Germinativas/crescimento & desenvolvimento , Reprodução/genética , Testículo/crescimento & desenvolvimento , Animais , Exposição Ambiental , Estrogênios/toxicidade , Feminino , Células Germinativas/metabolismo , Humanos , Masculino , Meiose/efeitos dos fármacos , Meiose/genética , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Reprodução/efeitos dos fármacos , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...