Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 37(7): 795-806, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38699979

RESUMO

Arms race dynamics are a common outcome of host-parasite coevolution. While they can theoretically be maintained indefinitely, realistic arms races are expected to be finite. Once an arms race has ended, for example due to the evolution of a generalist-resistant host, the system may transition into coevolutionary dynamics that favour long-term diversity. In microbial experiments, host-parasite arms races often transition into a stable coexistence of generalist-resistant hosts, (semi-)susceptible hosts, and parasites. While long-term host diversity is implicit in these cases, parasite diversity is usually overlooked. In this study, we examined parasite diversity after the end of an experimental arms race between a unicellular alga (Chlorella variabilis) and its lytic virus (PBCV-1). First, we isolated virus genotypes from multiple time points from two replicate microcosms. A time-shift experiment confirmed that the virus isolates had escalating host ranges, i.e., that arms races had occurred. We then examined the phenotypic and genetic diversity of virus isolates from the post-arms race phase. Post-arms race virus isolates had diverse host ranges, survival probabilities, and growth rates; they also clustered into distinct genetic groups. Importantly, host range diversity was maintained throughout the post-arms race phase, and the frequency of host range phenotypes fluctuated over time. We hypothesize that this dynamic polymorphism was maintained by a combination of fluctuating selection and demographic stochasticity. Together with previous work in prokaryotic systems, our results link experimental observations of arms races to natural observations of long-term host and parasite diversity.


Assuntos
Chlorella , Chlorella/virologia , Chlorella/genética , Variação Genética , Coevolução Biológica , Evolução Biológica
2.
Environ Microbiol ; 24(12): 5924-5935, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35799468

RESUMO

Endosymbiosis, an interaction between two species where one lives within the other, has evolved multiple times independently, but the underlying mechanisms remain unclear. Evolutionary theory suggests that for an endosymbiotic interaction to remain stable over time, births of both partners should be higher than their deaths in symbiosis and deaths of both partners should be higher than their births when living independently. However, experimentally measuring this can be difficult and conclusions tend to focus on the host. Using a ciliate-algal system (Paramecium bursaria host and Chlorella endosymbionts), we estimated the benefits and costs of endosymbiosis for both organisms using fitness measurements in different biotic environments to test under which environmental conditions the net effects of the interaction were positive for both partners. We found that the net effects of harbouring endosymbionts were positive for the ciliate hosts as it allowed them to survive in conditions of low-quality bacteria food. The algae benefitted by being endosymbiotic when predators such as the hosts were present, but the net effects were dependent on the total density of hosts, decreasing as hosts densities increased. Overall, we show that including context-dependency of endosymbiosis is essential in understanding how these interactions have evolved.


Assuntos
Chlorella , Cilióforos , Paramecium , Simbiose , Análise Custo-Benefício
3.
Viruses ; 10(9)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189587

RESUMO

Algal viruses are considered to be key players in structuring microbial communities and biogeochemical cycles due to their abundance and diversity within aquatic systems. Their high reproduction rates and short generation times make them extremely successful, often with immediate and strong effects for their hosts and thus in biological and abiotic environments. There are, however, conditions that decrease their reproduction rates and make them unsuccessful with no or little immediate effects. Here, we review the factors that lower viral success and divide them into intrinsic-when they are related to the life cycle traits of the virus-and extrinsic factors-when they are external to the virus and related to their environment. Identifying whether and how algal viruses adapt to disadvantageous conditions will allow us to better understand their role in aquatic systems. We propose important research directions such as experimental evolution or the resurrection of extinct viruses to disentangle the conditions that make them unsuccessful and the effects these have on their surroundings.


Assuntos
Organismos Aquáticos/virologia , Interações Hospedeiro-Parasita , Phycodnaviridae/crescimento & desenvolvimento , Adaptação Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...