Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(2-1): 024127, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723737

RESUMO

The dynamics of a polydisperse model glassformer are investigated by augmenting molecular dynamics (MD) simulation with swap Monte Carlo (SMC). Three variants of the SMC algorithm are analyzed with regard to convergence and performance. We elucidate the microscopic mechanism responsible for the drastic speed-up of structural relaxation at low temperature. It manifests in a stepwise increase of the mean-squared displacement when the timescale between the application of swap sweeps is significantly larger than a characteristic microscopic timescale. Compared to Newtonian dynamics, with the hybrid MD-SMC dynamics the glass transition shifts to a lower temperature and a different temperature dependence of the localization length is found.

2.
J Phys Condens Matter ; 51(3)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36301702

RESUMO

In studying solidification process by simulations on the atomic scale, the modeling of crystal nucleation or amorphization requires the construction of interatomic interactions that are able to reproduce the properties of both the solid and the liquid states. Taking into account rare nucleation events or structural relaxation under deep undercooling conditions requires much larger length scales and longer time scales than those achievable byab initiomolecular dynamics (AIMD). This problem is addressed by means of classical molecular dynamics simulations using a well established high dimensional neural network potential trained on a set of configurations generated by AIMD relevant for solidification phenomena. Our dataset contains various crystalline structures and liquid states at different pressures, including their time fluctuations in a wide range of temperatures. Applied to elemental aluminium, the resulting potential is shown to be efficient to reproduce the basic structural, dynamics and thermodynamic quantities in the liquid and undercooled states. Early stages of crystallization are further investigated on a much larger scale with one million atoms, allowing us to unravel features of the homogeneous nucleation mechanisms in the fcc phase at ambient pressure as well as in the bcc phase at high pressure with unprecedented accuracy close to theab initioone. In both cases, a single step nucleation process is observed.

3.
Phys Rev E ; 106(2-1): 024104, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109892

RESUMO

Ehrenfests' wind-tree model (EWTM) refers to a two-dimensional system where noninteracting point tracer particles move through a random arrangement of overlapping or nonoverlapping square-shaped scatterers. Here, extensive event-driven molecular dynamics simulations of the EWTM at different reduced scatterer densities ρ are presented. For nonoverlapping scatterers, the asymptotic motion of the tracer particles is diffusive. We compare their diffusion coefficient D, as obtained from the simulation, with that predicted by kinetic theory where D^{-1} is expanded up to the second order in the scatterer density. While at low density quantitative agreement between theory and simulation is found, we show that beyond the low-density regime deviations to the theory are associated with the emergence of a maximum in the non-Gaussian parameter at intermediate times. For the case of overlapping scatterers, in agreement with a theoretical prediction, the asymptotic motion of the tracer particles is subdiffusive, i.e., the mean-squared displacement at long times t grows like t^{1-2ρ/3}. We propose a model of the van Hove correlation function that describes the density dependence of the tracer particles' asymptotic subdiffusive transport on a quantitative level.

4.
J Chem Phys ; 157(3): 034501, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35868916

RESUMO

Molecular dynamics computer simulations of a polydisperse soft-sphere model under shear are presented. The starting point for these simulations are deeply supercooled samples far below the critical temperature, Tc, of mode coupling theory. These samples are fully equilibrated with the aid of the swap Monte Carlo technique. For states below Tc, we identify a lifetime τlt that measures the time scale on which the system can be considered as an amorphous solid. The temperature dependence of τlt can be well described by an Arrhenius law. The existence of transient amorphous solid states below Tc is associated with the possibility of brittle yielding, as manifested by a sharp stress drop in the stress-strain relation and shear banding. We show that brittle yielding requires, on the one hand, low shear rates and, on the other hand, the time scale corresponding to the inverse shear rate has to be smaller or of the order of τlt. Both conditions can only be met for a large lifetime τlt, i.e., for states far below Tc.

5.
J Chem Phys ; 156(24): 244501, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778105

RESUMO

Extensive molecular dynamics computer simulations of an equimolar, glass-forming AB mixture with a large size ratio are presented. While the large A particles show a glass transition around the critical density of mode-coupling theory ρc, the small B particles remain mobile with a relatively weak decrease in their self-diffusion coefficient DB with increasing density. Surprisingly, around ρc, the self-diffusion coefficient of species A, DA, also starts to show a rather weak dependence on density. We show that this is due to finite-size effects that can be understood from the analysis of the collective interdiffusion dynamics.

6.
Soft Matter ; 18(23): 4427-4436, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35638914

RESUMO

Using extensive numerical simulations, we investigate the flow behaviour of a model glass-forming binary mixture whose constituent particles have a large size ratio. The rheological response to applied shear is studied in the regime where the larger species are spatially predominant. We demonstrate that the macroscopic rigidity that emerges with increasing density occurs in the regime where the larger species undergo a glass transition while the smaller species continue to be highly diffusive. We analyse the interplay between the timescale imposed by the shear and the quiescent relaxation dynamics of the two species to provide a microscopic insight into the observed rheological response. Finally, by tuning the composition of the mixture, we illustrate that the systematic insertion of the smaller particles affects the rheology by lowering of viscosity of the system.

7.
Phys Rev E ; 106(6-1): 064103, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671122

RESUMO

In particle-based computer simulations of polydisperse glassforming systems, the particle diameters σ=σ_{1},⋯,σ_{N} of a system with N particles are chosen with the intention to approximate a desired distribution density f with the corresponding histogram. One method to accomplish this is to draw each diameter randomly and independently from the density f. We refer to this stochastic scheme as model S. Alternatively, one can apply a deterministic method, assigning an appropriate set of N values to the diameters. We refer to this method as model D. We show that, for sample-to-sample fluctuations, especially for the glassy dynamics at low temperatures, it matters whether one chooses model S or model D. Using molecular dynamics computer simulations, we investigate a three-dimensional polydisperse nonadditive soft-sphere system with f(s)∼s^{-3}. The swap Monte Carlo method is employed to obtain equilibrated samples at very low temperatures. We show that for model S the sample-to-sample fluctuations due to the quenched disorder imposed by the diameters σ can be explained by an effective packing fraction. Dynamic susceptibilities in model S can be split into two terms: one that is of thermal nature and can be identified with the susceptibility of model D, and another one originating from the disorder in σ. At low temperatures the latter contribution is the dominating term in the dynamic susceptibility. Our study clarifies the pros and cons of the use of models S and D in practice.


Assuntos
Simulação de Dinâmica Molecular , Método de Monte Carlo , Temperatura
8.
J Phys Condens Matter ; 34(9)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34889781

RESUMO

Research on soft matter and biological physics has grown tremendously in India over the past decades. In this editorial, we summarize the twenty-three research papers that were contributed to the special issue on Soft matter research in India. The papers in this issue highlight recent exciting advances in this rapidly expanding research area and include theoretical studies and numerical simulations of soft and biological systems, the synthesis and characterization of novel, functional soft materials and experimental investigations of their complex flow behaviours.


Assuntos
Modelos Teóricos , Índia
9.
Phys Rev E ; 102(2-1): 023002, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942371

RESUMO

Using extensive nonequilibrium molecular dynamics simulations, we investigate a glass-forming binary Lennard-Jones mixture under shear. Both supercooled liquids and glasses are considered. Our focus is on the characterization of inhomogeneous flow patterns such as shear bands that appear as a transient response to the external shear. For the supercooled liquids, we analyze the crossover from Newtonian to non-Newtonian behavior with increasing shear rate γ[over ̇]. Above a critical shear rate γ[over ̇]_{c} where a non-Newtonian response sets in, the transient dynamics are associated with the occurrence of short-lived vertical shear bands, i.e., bands of high mobility that form perpendicular to the flow direction. In the glass states, long-lived horizontal shear bands, i.e., bands of high mobility parallel to the flow direction, are observed in addition to vertical ones. The systems with shear bands are characterized in terms of mobility maps, stress-strain relations, mean-squared displacements, and (local) potential energies. The initial formation of a horizontal shear band provides an efficient stress release, corresponds to a local minimum of the potential energy, and is followed by a slow broadening of the band towards the homogeneously flowing fluid in the steady state. Whether a horizontal or a vertical shear band forms cannot be predicted from the initial undeformed sample. Furthermore, we show that with increasing system size, the probability for the occurrence of horizontal shear bands increases.

10.
Phys Rev E ; 101(4-1): 042609, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32422843

RESUMO

The effect of hydrodynamic interactions (HI) on the long-time self-diffusion in quasi-two-dimensional fluids of paramagnetic colloidal particles is investigated using a combination of experiments and Brownian dynamics (BD) simulations. In the BD simulations, the direct interactions (DI) between the particles consist of a short-ranged repulsive part and a long-ranged part that is proportional to 1/r^{3}, with r the interparticle distance. By studying the equation of state, the simulations allow for the identification of the regime where the properties of the fluid are fully controlled by the long-ranged interactions, and the thermodynamic state solely depends on the dimensionless interaction strength Γ. In this regime, the radial distribution functions from the simulations are in quantitative agreement with those from the experiments for different fluid area fractions. This agreement confirms that the DI in the experiments and simulations are identical, which thus allows us to isolate the role of HI, as these are not taken into account in the BD simulations. Experiment and simulation fall onto a master curve with respect to the Γ dependence of D_{L}^{★}=D_{L}/(D_{0}Γ^{1/2}), with D_{0} the self-diffusion coefficient at infinite dilution and D_{L} the long-time self-diffusion coefficient. Our results thus show that, although HI affect the short-time self-diffusion, for a quasi-two-dimensional system with 1/r^{3} long-ranged DI, the reduced quantity D_{L}^{★} is effectively not affected by HI. Interestingly, this is in agreement with prior work on quasi-two-dimensional colloidal hard spheres.

11.
Phys Rev E ; 101(2-1): 022605, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168679

RESUMO

The Soret effect, i.e., the flow of matter caused by a temperature gradient, is studied in a glass-forming binary Lennard-Jones (LJ) mixture, using nonequilibrium molecular dynamics computer simulation. The transport processes associated with this effect are thermal diffusion and interdiffusion. While interdiffusion processes exhibit a drastic slowing down when approaching the glass transition, thermal diffusion appears to be a fast process even in the glass. We show that the Soret effect becomes more pronounced in the vicinity of the glass transition, due to the decoupling between thermal diffusion and interdiffusion as well as the chemical ordering in the considered LJ mixture. This is reflected in the occurrence of large concentration gradients, nonlinear concentration profiles, and long-lived nonstationary structures.

12.
Phys Rev Lett ; 124(2): 025503, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004040

RESUMO

Experiments and simulations show that when an initially defect-free rigid crystal is subjected to deformation at a constant rate, irreversible plastic flow commences at the so-called yield point. The yield point is a weak function of the deformation rate, which is usually expressed as a power law with an extremely small nonuniversal exponent. We reanalyze a representative set of published data on nanometer sized, mostly defect-free Cu, Ni, and Au crystals in light of a recently proposed theory of yielding based on nucleation of stable stress-free regions inside the metastable rigid solid. The single relation derived here, which is not a power law, explains data covering 15 orders of magnitude in timescales.

13.
Soft Matter ; 15(22): 4437-4444, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011733

RESUMO

We study active microrheology in two-dimensional (2D) magnetic networks. To this end, we use Langevin dynamics computer simulations where single non-magnetic or magnetic tracer particles are pulled through the network structures via a constant force f. Structural changes in the network around the pulled tracer particle are characterized in terms of pair correlation functions. These functions indicate that the non-magnetic tracer particles tend to strongly affect the network structure leading to the formation of channels at sufficiently high forces, while the magnetic tracer particles modify the network structure only slightly. At zero pulling force, f = 0, both non-magnetic and magnetic tracer particles are localized, i.e. they do not show diffusive behavior in the long-time limit. Nevertheless, the friction coefficient, as obtained from the steady-state velocity of the tracer particles, seems to indicate a linear-response regime at small values of f. Beyond the latter linear response regime, the diffusion dynamics of the tracer particles are anisotropic with superdiffusive behavior in force direction. This transport anomaly is investigated via van Hove correlation functions and residence time distributions.

14.
Soft Matter ; 15(3): 415-423, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30565639

RESUMO

Via extensive numerical simulations, we study the fluidisation process of dense amorphous materials subjected to an external shear stress, using a three-dimensional colloidal glass model. In order to disentangle possible boundary effects from finite size effects in the process of fluidisation, we implement a novel geometry-constrained protocol with periodic boundary conditions. We show that this protocol is well controlled and that the longtime fluidisation dynamics is, to a great extent, independent of the details of the protocol parameters. Our protocol, therefore, provides an ideal tool to investigate the bulk dynamics prior to yielding and to study finite size effects regarding the fluidisation process. Our study reveals the existence of precursors to fluidisation observed as a peak in the strain-rate fluctuations, that allows for a robust definition of a fluidisation time. Although the exponents in the power-law creep dynamics seem not to depend significantly on the system size, we reveal strong finite size effects for the onset of fluidisation.

15.
J Chem Phys ; 149(18): 184503, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441923

RESUMO

We show that a flat two dimensional network of connected vertices, when stretched, may deform plastically by producing "pleats", system spanning linear structures with width comparable to the lattice spacing, where the network overlaps on itself. To understand the pleating process, we introduce an external field that couples to local non-affine displacements, i.e., those displacements of neighbouring vertices that cannot be represented as a local affine strain. We obtain both zero and finite temperature phase diagrams in the strain-field plane. Pleats occur here as a result of an equilibrium first-order transition from the homogeneous network to a heterogeneous phase where stress is localised within pleats and eliminated elsewhere. We show that in the thermodynamic limit, the un-pleated state is always metastable at vanishing field for infinitesimal strain. Plastic deformation of the initially homogeneous network is akin to the decay of a metastable phase via a dynamical transition. We make predictions concerning local stress distributions and thermal effects associated with pleats which may be observable in suitable experimental systems.

16.
Soft Matter ; 14(20): 4141-4149, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29700548

RESUMO

Molecular dynamics (MD) computer simulations are used to study the structure of hard-core Yukawa systems confined between two parallel hard walls. States around the coexistence between a fluid and a body-centered cubic (BCC) crystal are considered. In all cases a pronounced layering in the vicinity of the walls is observed. Using a thermodynamic integration scheme, we determine the wall-fluid interfacial free energy γ which is negative and monotonically decreasing with increasing bulk density of the fluid. In the case of the fluid, the layers next to the walls undergo a transition from a fluid to a hexagonal structure. This pre-freezing transition occurs well below the coexistence bulk density of the fluid. The confined BCC crystal in (111) orientation shows melted regions between crystalline face-centered cubic (FCC) layers close to the wall and the BCC bulk region.

17.
Proc Natl Acad Sci U S A ; 115(19): E4322-E4329, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29674452

RESUMO

Customarily, crystalline solids are defined to be rigid since they resist changes of shape determined by their boundaries. However, rigid solids cannot exist in the thermodynamic limit where boundaries become irrelevant. Particles in the solid may rearrange to adjust to shape changes eliminating stress without destroying crystalline order. Rigidity is therefore valid only in the metastable state that emerges because these particle rearrangements in response to a deformation, or strain, are associated with slow collective processes. Here, we show that a thermodynamic collective variable may be used to quantify particle rearrangements that occur as a solid is deformed at zero strain rate. Advanced Monte Carlo simulation techniques are then used to obtain the equilibrium free energy as a function of this variable. Our results lead to a unique view on rigidity: While at zero strain a rigid crystal coexists with one that responds to infinitesimal strain by rearranging particles and expelling stress, at finite strain the rigid crystal is metastable, associated with a free energy barrier that decreases with increasing strain. The rigid phase becomes thermodynamically stable when an external field, which penalizes particle rearrangements, is switched on. This produces a line of first-order phase transitions in the field-strain plane that intersects the origin. Failure of a solid once strained beyond its elastic limit is associated with kinetic decay processes of the metastable rigid crystal deformed with a finite strain rate. These processes can be understood in quantitative detail using our computed phase diagram as reference.

18.
Phys Rev Lett ; 120(7): 078001, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542967

RESUMO

Molecular dynamics simulations of interacting soft disks confined in a heterogeneous quenched matrix of soft obstacles show dynamics which is fundamentally different from that of hard disks. The interactions between the disks can enhance transport when their density is increased, as disks cooperatively help each other over the finite energy barriers in the matrix. The system exhibits a transition from a diffusive to a localized state, but the transition is strongly rounded. Effective exponents in the mean-squared displacement can be observed over three decades in time but depend on the density of the disks and do not correspond to asymptotic behavior in the vicinity of a critical point, thus, showing that it is incorrect to relate them to the critical exponents in the Lorentz model scenario. The soft interactions are, therefore, responsible for a breakdown of the universality of the dynamics.

19.
J Chem Phys ; 147(8): 084704, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28863547

RESUMO

We present a three-dimensional Ising model where lines of equal spins are frozen such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this "porous Ising model" can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH4) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.

20.
Phys Rev E ; 95(3-1): 032602, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415279

RESUMO

A binary mixture of superparamagnetic colloidal particles is confined between glass plates such that the large particles become fixed and provide a two-dimensional disordered matrix for the still mobile small particles, which form a fluid. By varying fluid and matrix area fractions and tuning the interactions between the superparamagnetic particles via an external magnetic field, different regions of the state diagram are explored. The mobile particles exhibit delocalized dynamics at small matrix area fractions and localized motion at high matrix area fractions, and the localization transition is rounded by the soft interactions [T. O. E. Skinner et al., Phys. Rev. Lett. 111, 128301 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.128301]. Expanding on previous work, we find the dynamics of the tracers to be strongly heterogeneous and show that molecular dynamics simulations of an ideal gas confined in a fixed matrix exhibit similar behavior. The simulations show how these soft interactions make the dynamics more heterogeneous compared to the disordered Lorentz gas and lead to strong non-Gaussian fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...