Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 12(1): 272, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28410550

RESUMO

In this work, the hybrid structures were created by electrochemical etching of silicon wafer and deposition of reduced graphene oxide (RGO) on the porous silicon (PS) layer. With the help of SEM and AFM, the formation of hybrid PS-RGO structure was confirmed. By means of current-voltage characteristic analysis and impedance spectroscopy, we studied electrical characteristics of PS-RGO structures. The formation of photosensitive electrical barriers in hybrid structures was revealed. Temporal parameters and spectral characteristics of photoresponse in the 400-1100-nm wavelength range were investigated. The widening of spectral range of photosensitivity of the hybrid structures in short-wavelength range in comparison with single-crystal silicon was revealed. The obtained results broaden the prospects of application of the PS-RGO structures in photoelectronics.

2.
Nanoscale Res Lett ; 11(1): 43, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26831681

RESUMO

We studied an effect of the graphene oxide (GO) layer on the optical and electrical properties of porous silicon (PS) in hybrid PS-GO structure created by electrochemical etching of silicon wafer and deposition of GO from water dispersion on PS. With the help of scanning electron microscopy (SEM), atomic-force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy, it was established that GO formed a thin film on the PS surface and is partly embedded in the pores of PS. A comparative analysis of the FTIR spectra for the PS and PS-GO structures confirms the passivation of the PS surface by the GO film. This film has a sufficient transparency for excitation and emission of photoluminescence (PL). Moreover, GO modifies PL spectrum of PS, shifting the PL maximum by 25 nm towards lower energies. GO deposition on the surface of the porous silicon leads to the change in the electrical parameters of PS in AC and DC modes. By means of current-voltage characteristics (CVC) and impedance spectroscopy, it is shown that the impact of GO on electrical characteristics of PS manifests in reduced capacitance and lower internal resistance of hybrid structures.

3.
Nanoscale Res Lett ; 10: 187, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977659

RESUMO

ABSTRACT: In this work, we have prepared film sensor elements based on a hybrid system poly(3,4-ethylenedioxythiophene)-porous silicon nanocrystals-carbon nanotubes on flexible polymer substrates. Our FTIR spectroscopy-based studies for the molecular structure of the materials obtained suggest some interaction of their components in the hybrid layer. The influence of adsorption of water molecules on the conductivity and capacitance of the hybrid composites has been investigated in the temperature range of 20°C to 40°C. We have detected essential changes in the electrical conductivity and capacitance which depend on the humidity of the surrounding atmosphere. For estimating the sensing properties of our composites, we have analyzed the sensing abilities of the hybrid systems and their dynamic characteristics. The hybrid composites as working materials for the sensors provide improved performance of the latter. In particular, the response time is reduced by 3 to 5 times. PACS: 73.63.-b, 73.61.Ph, 82.35.Np, 81.05.Rm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...