Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 36(34): 4943-4950, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28436950

RESUMO

The MRN (MRE11-RAD50-NBS1) complex is essential for repair of DNA double-strand breaks and stalled replication forks. Mutations of the MRN complex subunit MRE11 cause the hereditary cancer-susceptibility disease ataxia-telangiectasia-like disorder (ATLD). Here we show that MRE11 directly interacts with PIH1D1, a subunit of heat-shock protein 90 cochaperone R2TP complex, which is required for the assembly of large protein complexes, such as RNA polymerase II, small nucleolar ribonucleoproteins and mammalian target of rapamycin complex 1. The MRE11-PIH1D1 interaction is dependent on casein kinase 2 (CK2) phosphorylation of two acidic sequences within the MRE11 C terminus containing serines 558/561 and 688/689. Conversely, the PIH1D1 phospho-binding domain PIH-N is required for association with MRE11 phosphorylated by CK2. Consistent with these findings, depletion of PIH1D1 resulted in MRE11 destabilization and affected DNA-damage repair processes dependent on MRE11. Additionally, mutations of serines 688/689, which abolish PIH1D1 binding, also resulted in decreased MRE11 stability. As depletion of R2TP frequently leads to instability of its substrates and as truncation mutation of MRE11 lacking serines 688/689 leads to decreased levels of the MRN complex both in ATLD patients and an ATLD mouse model, our results suggest that the MRN complex is a novel R2TP complex substrate and that their interaction is regulated by CK2 phosphorylation.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Caseína Quinase II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Animais , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Núcleo Celular/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Mutação/fisiologia , Proteínas Nucleares/metabolismo , Fosforilação/fisiologia , Ligação Proteica/fisiologia , RNA Polimerase II/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Serina/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Oncogene ; 29(2): 273-84, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19802007

RESUMO

Cellular senescence guards against cancer and modulates aging; however, the underlying mechanisms remain poorly understood. Here, we show that genotoxic drugs capable of inducing premature senescence in normal and cancer cells, such as 5-bromo-2'-deoxyuridine (BrdU), distamycin A (DMA), aphidicolin and hydroxyurea, persistently activate Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling and expression of interferon-stimulated genes (ISGs), such as MX1, OAS, ISG15, STAT1, PML, IRF1 and IRF7, in several human cancer cell lines. JAK1/STAT-activating ligands, interleukin 10 (IL10), IL20, IL24, interferon gamma (IFNgamma), IFNbeta and IL6, were also expressed by senescent cells, supporting autocrine/paracrine activation of JAK1/STAT. Furthermore, cytokine genes, including proinflammatory IL1, tumor necrosis factor and transforming growth factor families, were highly expressed. The strongest inducer of JAK/STAT signaling, cytokine production and senescence was BrdU combined with DMA. RNA interference-mediated knockdown of JAK1 abolished expression of ISGs, but not DNA damage signaling or senescence. Thus, although DNA damage signaling, p53 and RB activation, and the cytokine/chemokine secretory phenotype are apparently shared by all types of senescence, our data reveal so far unprecedented activation of the IFNbeta-STAT1-ISGs axis, and indicate a less prominent causative role of IL6-JAK/STAT signaling in genotoxic drug-induced senescence compared with reports on oncogene-induced or replicative senescence. These results highlight shared and unique features of drug-induced cellular senescence, and implicate induction of cancer secretory phenotype in chemotherapy.


Assuntos
Bromodesoxiuridina/farmacologia , Senescência Celular/efeitos dos fármacos , Citocinas/metabolismo , Distamicinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Citocinas/genética , Sinergismo Farmacológico , Células HeLa , Humanos , Interferons/genética , Interferons/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
3.
Oncogene ; 26(53): 7414-22, 2007 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17546051

RESUMO

MDC1 and 53BP1 are critical components of the DNA damage response (DDR) machinery that protects genome integrity and guards against cancer, yet the tissue expression patterns and involvement of these two DDR adaptors/mediators in human tumours remain largely unknown. Here we optimized immunohistochemical analyses of human 53BP1 and MDC1 proteins in situ and identified their virtually ubiquitous expression, both in proliferating and quiescent, differentiated tissues. Focus formation by 53BP1 and/or MDC1 in human spermatogenesis and subsets of breast and lung carcinomas indicated physiological and 'pathological' activation of the DDR, respectively. Furthermore, aberrant reduction or lack of either protein in significant proportions of carcinomas supported the candidacy of 53BP1 and MDC1 for tumour suppressors. Contrary to carcinomas, almost no activation or loss of MDC1 or 53BP1 were found among testicular germ-cell tumours (TGCTs), a tumour type with unique biology and exceptionally low incidence of p53 mutations. Such concomitant presence (in carcinomas) or absence (in TGCTs) of DDR activation and DDR aberrations supports the roles of MDC1 and 53BP1 within the ATM/ATR-regulated checkpoint network which, when activated, provides an early anti-cancer barrier the pressure of which selects for DDR defects such as p53 mutations or loss of 53BP1/MDC1 during cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Dano ao DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Embrionárias de Células Germinativas/metabolismo , Proteínas Nucleares/biossíntese , Neoplasias Testiculares/metabolismo , Transativadores/biossíntese , Proteínas Adaptadoras de Transdução de Sinal , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Proteínas Nucleares/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Transativadores/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
4.
Blood ; 98(13): 3668-76, 2001 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11739171

RESUMO

The development of blood cells proceeds from pluripotent stem cells through multipotent progenitors into mature elements belonging to at least 8 different lineages. The lineage choice process during which stem cells and progenitors commit to a particular lineage is regulated by a coordinated action of extracellular signals and transcription factors. Molecular mechanisms controlling commitment are largely unknown. Here, the transcription factor v-Myb and its leucine zipper region (LZR) are identified as regulators of the commitment of a common myeloid progenitor and progenitors restricted to the myeloid lineage. It is demonstrated that wild-type v-Myb with the intact LZR directs development of progenitors into the macrophage lineage. Mutations in this region compromise commitment toward myeloid cells and cause v-Myb to also support the development of erythroid cells, thrombocytes, and granulocytes, similar to the c-Myb protein. In agreement with that, the wild-type v-Myb induces high expression of myeloid factors C/EBP beta, PU.1, and Egr-1 in its target cells, whereas SCL, GATA-1, and c-Myb are more abundant in cells expressing the v-Myb LZR mutant. It is proposed that Myb LZR can function as a molecular switch, affecting expression of lineage-specifying transcription factors and directing the development of hematopoietic progenitors into either myeloid or erythroid lineages.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Zíper de Leucina , Proteínas Oncogênicas v-myb/química , Proteínas Oncogênicas v-myb/fisiologia , Animais , Plaquetas , Northern Blotting , Western Blotting , Embrião de Galinha , Eritrócitos , Citometria de Fluxo , Imunofluorescência , Deleção de Genes , Granulócitos , Macrófagos , Mutação , Proteínas Oncogênicas v-myb/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...