Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breed Sci ; 73(3): 332-342, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37840983

RESUMO

Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the japonica background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous japonica background to be validated.

2.
Plant J ; 114(4): 729-742, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36974032

RESUMO

Improving crop yield potential through an enhanced response to rising atmospheric CO2 levels is an effective strategy for sustainable crop production in the face of climate change. Large-sized panicles (containing many spikelets per panicle) have been a recent ideal plant architecture (IPA) for high-yield rice breeding. However, few breeding programs have proposed an IPA under the projected climate change. Here, we demonstrate through the cloning of the rice (Oryza sativa) quantitative trait locus for MORE PANICLES 3 (MP3) that the improvement in panicle number increases grain yield at elevated atmospheric CO2 levels. MP3 is a natural allele of OsTB1/FC1, previously reported as a negative regulator of tiller bud outgrowth. The temperate japonica allele advanced the developmental process in axillary buds, moderately promoted tillering, and increased the panicle number without negative effects on the panicle size or culm thickness in a high-yielding indica cultivar with large-sized panicles. The MP3 allele, containing three exonic polymorphisms, was observed in most accessions in the temperate japonica subgroups but was rarely observed in the indica subgroup. No selective sweep at MP3 in either the temperate japonica or indica subgroups suggested that MP3 has not been involved and utilized in artificial selection during domestication or breeding. A free-air CO2 enrichment experiment revealed a clear increase of grain yield associated with the temperate japonica allele at elevated atmospheric CO2 levels. Our findings show that the moderately increased panicle number combined with large-sized panicles using MP3 could be a novel IPA and contribute to an increase in rice production under climate change with rising atmospheric CO2 levels.


Assuntos
Oryza , Dióxido de Carbono , Alelos , Melhoramento Vegetal , Grão Comestível/genética
3.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886876

RESUMO

Rice (Oryza sativa L [...].


Assuntos
Oryza , Oryza/genética , Fenótipo
4.
Rice (N Y) ; 15(1): 33, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776387
5.
Rice (N Y) ; 15(1): 13, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247122

RESUMO

Phenotypic differences among breeding lines that introduce the same superior gene allele can be a barrier to effective development of cultivars with desirable traits in some crop species. For example, a deficient mutation of the Protein Disulfide Isomerase Like 1-1 (PDIL1-1) gene can cause accumulation of glutelin seed storage protein precursors in rice endosperm, and improves rice flour characteristics and food processing properties. However, the gene must be expressed to be useful. A deficient mutant allele of PDIL1-1 was introduced into two rice cultivars with different genetic backgrounds (Koshihikari and Oonari). The grain components, agronomic traits, and rice flour and food processing properties of the resulting lines were evaluated. The two breeding lines had similar seed storage protein accumulation, amylose content, and low-molecular-weight metabolites. However, only the Koshihikari breeding line had high flour quality and was highly suitable for rice bread, noodles, and sponge cake, evidence of the formation of high-molecular-weight protein complexes in the endosperm. Transcriptome analysis revealed that mRNA levels of fourteen PDI, Ero1, and BiP genes were increased in the Koshihikari breeding line, whereas this change was not observed in the Oonari breeding line. We elucidated part of the molecular basis of the phenotypic differences between two breeding lines possessing the same mutant allele in different genetic backgrounds. The results suggest that certain genetic backgrounds can negate the beneficial effect of the PDIL1-1 mutant allele. Better understanding of the molecular basis for such interactions may accelerate future breeding of novel rice cultivars to meet the strong demand for gluten-free foods.

6.
Nat Food ; 3(8): 597-607, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-37118598

RESUMO

Global contamination of soils with toxic cadmium (Cd) is a serious health threat. Here we found that a tandem duplication of a gene encoding a manganese/Cd transporter, OsNramp5, was responsible for low-Cd accumulation in Pokkali, an old rice cultivar. This duplication doubled the expression of OsNramp5 gene but did not alter its spatial expression pattern and cellular localization. Higher expression of OsNramp5 increased uptake of Cd and Mn into the root cells but decreased Cd release to the xylem. Introgression of this allele into Koshihikari, an elite rice cultivar, through backcrossing significantly reduced Cd accumulation in the grain when cultivated in soil heavily contaminated with Cd but did not affect both grain yield and eating quality. This study not only reveals the molecular mechanism underlying low-Cd accumulation but also provides a useful target for breeding rice cultivars with low-Cd accumulation.

7.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498523

RESUMO

Climate resilience of crops is critical for global food security. Understanding the genetic basis of plant responses to ambient environmental changes is key to developing resilient crops. To detect genetic factors that set flowering time according to seasonal temperature conditions, we evaluated differences of flowering time over years by using chromosome segment substitution lines (CSSLs) derived from japonica rice cultivars "Koshihikari" × "Khao Nam Jen", each with different robustness of flowering time to environmental fluctuations. The difference of flowering times in 9 years' field tests was large in "Khao Nam Jen" (36.7 days) but small in "Koshihikari" (9.9 days). Part of this difference was explained by two QTLs. A CSSL with a "Khao Nam Jen" segment on chromosome 11 showed 28.0 days' difference; this QTL would encode a novel flowering-time gene. Another CSSL with a segment from "Khao Nam Jen" in the region around Hd16 on chromosome 3 showed 23.4 days" difference. A near-isogenic line (NIL) for Hd16 showed 21.6 days' difference, suggesting Hd16 as a candidate for this QTL. RNA-seq analysis showed differential expression of several flowering-time genes between early and late flowering seasons. Low-temperature treatment at panicle initiation stage significantly delayed flowering in the CSSL and NIL compared with "Koshihikari". Our results unravel the molecular control of flowering time under ambient temperature fluctuations.


Assuntos
Aclimatação , Flores/crescimento & desenvolvimento , Oryza/genética , Locos de Características Quantitativas , Flores/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Rice (N Y) ; 14(1): 8, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33415511

RESUMO

BACKGROUND: In temperate rice cultivation regions, japonica rice cultivars are grown preferentially because consumers deem them to have good eating quality, whereas indica rice cultivars have high grain yields and strong heat tolerance but are considered to have poor eating quality. To mitigate the effects of global warming on rice production, it is important to develop novel rice cultivars with both desirable eating quality and resilience to high temperatures. Eating quality and agronomic traits were evaluated in a reciprocal set of chromosome segment substitution lines derived from crosses between a japonica rice cultivar 'Koshihikari' and an indica rice cultivar 'Takanari'. RESULTS: We detected 112 QTLs for amylose and protein contents, whiteness, stickiness, hardness and eating quality of cooked rice grains. Almost of 'Koshihikari' chromosome segments consistently improved eating quality. Among detected QTLs, six QTLs on chromosomes 1-5 and 11 were detected that increased whiteness and stickiness of cooked grains or decreased their hardness for 3 years. The QTLs on chromosomes 2-4 were not associated with differences in amylose or protein contents. QTLs on chromosomes 1-5 did not coincide with QTLs for agronomic traits such as heading date, culm length, panicle length, spikelet fertility and grain yield. Genetic effects of the detected QTLs were confirmed in substitution lines carrying chromosome segments from five other indica cultivars in the 'Koshihikari' genetic background. CONCLUSION: The detected QTLs were associated with differences in eating quality between indica and japonica rice cultivars. These QTLs appear to be widely distributed among indica cultivars and to be novel genetic factors for eating quality traits because their chromosome regions differed from those of the GBSSI (Wx) and SSIIa (Alk) genes. The detected QTLs would be very useful for improvement of eating quality of indica rice cultivars in breeding programs.

10.
Breed Sci ; 69(2): 352-358, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31481845

RESUMO

IR64 is one of the world's most popular rice cultivars. To collect genetic factors involved in controlling its heading date, we developed 70 reciprocal advanced-backcross populations with a total of 6284 individuals at the BC4F2 generation from crosses between Koshihikari and IR64. We detected 29 QTLs associated with heading date on chromosomes 3, 5-8, 10, and 12. Twenty QTLs were located in the same chromosome regions as previously isolated heading date genes (Hd1, Hd6, Hd16, Ghd7, DTH8, Hd17, and Hd18). The rest were located in other chromosome regions. We found more number of QTLs than previous studies using mapping populations of IR64. Fine mapping in additional advanced-backcross populations clearly revealed that QTLs on the long arm of chromosome 7 are overlapping and seem to be a novel genetic factor for heading date because of their different locations from OsPRR37. Our results suggest that the difference in heading date between IR64 and Koshihikari is genetically controlled by many factors, and that a non-functional allele of Hd1 contributes to early heading of IR64 in the genetic background of functional alleles of other heading date QTLs and genes such as Hd6 and Hd16.

11.
Biosci Biotechnol Biochem ; 83(3): 502-510, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30458671

RESUMO

Eating quality of cooked rice grains is an important determinant of its market price and consumer acceptance. To comprehensively assess the variation of eating-quality traits in 152 Japanese rice cultivars, we evaluated activities of eight endosperm enzymes related to degradation of starch and cell-wall polysaccharides. Endosperm enzyme activities showed a wide range of variations and were lower in recently developed cultivars than in landraces and old improved cultivars. Activities of most endosperm enzymes correlated significantly with the eating-quality score and surface texture of cooked rice grains. Principal component analysis revealed that rice cultivars with high eating-quality scores had high stickiness of the grain surface and low levels of endosperm enzyme activities. These results suggest that endosperm enzyme activities control texture and eating quality of cooked rice grains in Japanese rice cultivars.


Assuntos
Culinária , Endosperma/enzimologia , Qualidade dos Alimentos , Oryza/enzimologia , Cruzamento , Paladar
12.
Breed Sci ; 68(2): 210-218, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29875604

RESUMO

Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in the genetic background of Koshihikari, a cooking cultivar. We developed a set of 49 CSSLs. Grain length (GL), grain width (GWh), grain thickness (GT), 100-grain weight (GWt) and days to heading (DTH) were evaluated, and a CSSL-QTL analysis was conducted. Eighteen QTLs for grain size and DTH were identified. Seven (qGL11, qGWh5, qGWh10, qGWt6-2, qGWt10-2, qDTH3, and qDTH6) that were detected in F2 and recombinant inbred lines (RILs) from Koshihikari/Yamadanishiki were validated, suggesting that they are important for large grain size and heading date in Yamadanishiki. Additionally, QTL reanalysis for GWt showed that qGWt10-2 was only detected in early-flowering RILs, while qGWt5 (in the same region as qGWh5) was only detected in late-flowering RILs, suggesting that these QTLs show different responses to the environment. Our study revealed that grain size in the Yamadanishiki cultivar is determined by a complex genetic mechanism. These findings could be useful for the breeding of both cooking and brewing rice.

13.
Rice (N Y) ; 11(1): 15, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29629486

RESUMO

Koshihikari, a Japanese short-grain rice cultivar, was developed in 1956, more than 60 years ago. Despite its age, it has been the most widely grown cultivar in Japan for more than 35 years, making it the most important rice for the Japanese people. In its early days, there was no reason to predict that Koshihikari would become so widely disseminated. However, since the end of the post-World War II food shortage in the 1960s, Japanese preferences changed from high productivity to good eating quality. This triggered wide expansion of Koshihikari cultivation due to the cultivar's excellent taste and texture. With increasing cultivation of Koshihikari in Japan, several good agronomic characteristics beyond its high eating quality became apparent, such as its good adaptation to different environments, tolerance to pre-harvest sprouting, and cold tolerance during the booting stage. These characteristics outweigh drawbacks such as its low blast resistance and low lodging resistance. The popularity of Koshihikari influenced subsequent rice breeding trends at regional agricultural experimental stations, and the characteristics of newly developed rice cultivars in Japan are usually rated relative to Koshihikari, which is used as the benchmark. Koshihikari was the first japonica rice cultivar whose whole genome has been sequenced by means of next-generation sequencing. Furthermore, comparison of the genomes of Koshihikari and Nipponbare has provided detailed insights into the genetic diversity of Japanese rice cultivars relative to that in rice populations elsewhere in the world. Further progress in rice genomics is gradually unlocking the mechanisms that underlie the agronomic characteristics of Koshihikari. To support both research and the development of novel rice cultivars, a series of isogenic and near-isogenic lines in the Koshihikari genetic background have been continuously developed. These new findings and materials will facilitate genomics-assisted rice breeding, eventually leading to superior cultivars.

14.
J Exp Bot ; 69(3): 553-565, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29237079

RESUMO

Many short-day plants have a critical day length that fixes the schedule for flowering time, limiting the range of natural growth habitats (or growth and cultivation areas). Thus, fine-tuning of the critical day-length setting in photoperiodic flowering determines ecological niches within latitudinal clines; however, little is known about the molecular mechanisms controlling the fine-tuning of the critical day-length setting in plants. Previously, we determined that florigen genes are regulated by day length, and identified several key genes involved in setting the critical day length in rice. Using a set of chromosomal segment substitution lines with the genetic background of an elite temperate japonica cultivar, we performed a series of expression analyses of flowering-time genes to identify those responsible for setting the critical day-length in rice. Here, we identified two casein kinase genes, Hd16 and Hd6, which modulate the expression of florigen genes within certain restricted ranges of photoperiod, thereby fine-tuning the critical day length. In addition, we determined that Hd16 functions as an enhancer of the bifunctional action of Hd1 (the Arabidopsis CONSTANS ortholog) in rice. Utilization of the natural variation in Hd16 and Hd6 was only found among temperate japonica cultivars adapted to northern areas. Therefore, this fine-tuning of the setting of the critical day length may contribute to the potential northward expansion of rice cultivation areas.


Assuntos
Caseína Quinases/genética , Relógios Circadianos/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Caseína Quinases/metabolismo , Florígeno/metabolismo , Flores/genética , Mutação , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Estações do Ano
15.
Plant Physiol ; 175(4): 1720-1731, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29101279

RESUMO

Increasing grain yield is an endless challenge for cereal crop breeding. In barley (Hordeum vulgare), grain number is controlled mainly by Six-rowed spike 1 (Vrs1), which encodes a homeodomain leucine zipper class I transcription factor. However, little is known about the genetic basis of grain size. Here, we show that extreme suppression of lateral florets contributes to enlarged grains in deficiens barley. Through a combination of fine-mapping and resequencing of deficiens mutants, we have identified that a single amino acid substitution at a putative phosphorylation site in VRS1 is responsible for the deficiens phenotype. deficiens mutant alleles confer an increase in grain size, a reduction in plant height, and a significant increase in thousand grain weight in contemporary cultivated germplasm. Haplotype analysis revealed that barley carrying the deficiens allele (Vrs1.t1) originated from two-rowed types carrying the Vrs1.b2 allele, predominantly found in germplasm from northern Africa. In situ hybridization of histone H4, a marker for cell cycle or proliferation, showed weaker expression in the lateral spikelets compared with central spikelets in deficiens Transcriptome analysis revealed that a number of histone superfamily genes were up-regulated in the deficiens mutant, suggesting that enhanced cell proliferation in the central spikelet may contribute to larger grains. Our data suggest that grain yield can be improved by suppressing the development of specific organs that are not positively involved in sink/source relationships.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Hordeum/fisiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Haplótipos , Hordeum/genética , Mutação , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transcrição Gênica
16.
Theor Appl Genet ; 130(12): 2567-2585, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28887658

RESUMO

KEY MESSAGE: The grain traits of Yamadanishiki, an excellent sake-brewing rice cultivar in Japan, are governed by multiple QTLs, namely, a total of 42 QTLs including six major QTLs. Japanese rice wine (sake) is produced using brewing rice (Oryza sativa L.) that carries traits desirable for sake-brewing, such as a larger grain size and higher white-core expression rate (WCE) compared to cooking rice cultivars. However, the genetic basis for these traits in brewing rice cultivars is still unclear. We performed analyses of quantitative trait locus (QTL) of grain and days to heading over 3 years on populations derived from crosses between Koshihikari, a cooking rice, and Yamadanishiki, an excellent sake-brewing rice. A total of 42 QTLs were detected for the grain traits, and the Yamadanishiki alleles at 16 QTLs contributed to larger grain size. Two major QTLs essential for regulating both 100-grain weight (GWt) and grain width (GWh) were harbored in the same regions on chromosomes 5 and 10. An interaction was noted between the environment and the QTL associated with WCE on chromosome 6, which was detected in two of 3 years. In addition, two QTLs for WCE on chromosomes 3 and 10 overlapped with the QTLs for GWt and GWh, suggesting that QTLs associated with grain size also play an important role in the formation of white-core. Despite differences in the rate of grain growth in both Koshihikari and Yamadanishiki across 2 years, the WCE in Yamadanishiki remained consistent, thus demonstrating that the formation of white-core does not depend on grain filling speed. These data can be informative for programs involved in breeding better cooking and brewing rice cultivars.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Bebidas Alcoólicas , Mapeamento Cromossômico , Cromossomos de Plantas , Grão Comestível/genética , Ligação Genética , Técnicas de Genotipagem , Japão , Fenótipo , Melhoramento Vegetal
17.
Breed Sci ; 67(5): 427-434, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29398936

RESUMO

Many quantitative trait loci (QTLs) for agronomically important traits such as grain yield, disease resistance, and stress tolerance of rice (Oryza sativa L.) have been detected by using segregating populations derived from crosses between indica and japonica subspecies or with wild relatives. However, the QTLs involved in the control of natural variation in agronomic traits among closely related cultivars are still unclear. Decoding the whole genome sequences of Nipponbare and other temperate japonica rice cultivars has accelerated the collection of a huge number of single nucleotide polymorphisms (SNPs). These SNPs are good resource for developing polymorphic DNA markers and for detecting QTLs distributed across all rice chromosomes. The temperate japonica rice cultivar Koshihikari has remained the top cultivar for about 40 years since 1979 in Japan. Unraveling the genetic factors in Koshihikari will provide important insights into improving agronomic traits in temperate japonica rice cultivars. Here we describe recent progress in our studies as an example of genetic analysis in closely related cultivars.

18.
Theor Appl Genet ; 129(12): 2241-2252, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27695876

RESUMO

KEY MESSAGE: Integration of previous Mendelian genetic analyses and recent molecular genomics approaches, such as linkage mapping and QTL cloning, dramatically strengthened our current understanding of genetic control of rice flowering time. Flowering time is one of the most important agronomic traits for seed production in rice (Oryza sativa L.). It is controlled mainly by genes associated with photoperiod sensitivity, particularly in short-day plants such as rice. Since the early twentieth century, rice breeders and researchers have been interested in elucidating the genetic basis of flowering time because its modification is important for regional adaptation and yield optimization. Although flowering time is a complex trait controlled by many quantitative trait loci (QTLs), classical genetic studies have shown that many associated genes are inherited in accordance with Mendelian laws. Decoding the rice genome sequence opened a new era in understanding the genetic control of flowering time on the basis of genome-wide mapping and gene cloning. Heading date 1 (Hd1) was the first flowering time QTL to be isolated using natural variation in rice. Recent accumulation of information on rice genome has facilitated the cloning of other QTLs, including those with minor effects on flowering time. This information has allowed us to rediscover some of the flowering genes that were identified by classical Mendelian genetics. The genes characterized so far, including Hd1, have been assigned to specific photoperiod pathways. In this review, we provide an overview of the studies that led to an in-depth understanding of the genetic control of flowering time in rice, and of the current state of improving and fine-tuning this trait for rice breeding.


Assuntos
Flores/fisiologia , Genes de Plantas , Oryza/genética , Fotoperíodo , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genômica , Oryza/fisiologia , Melhoramento Vegetal , Locos de Características Quantitativas
19.
Plant Cell Physiol ; 57(9): 1828-38, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27318280

RESUMO

Flowering time is one of the most important agronomic traits in rice (Oryza sativa L.), because it defines harvest seasons and cultivation areas, and affects yields. We used a map-based strategy to clone Heading date 18 (Hd18). The difference in flowering time between the Japanese rice cultivars Koshihikari and Hayamasari was due to a single nucleotide polymorphism within the Hd18 gene, which encodes an amine oxidase domain-containing protein and is homologous to Arabidopsis FLOWERING LOCUS D (FLD). The Hayamasari Hd18 allele and knockdown of Hd18 gene expression delayed the flowering time of rice plants regardless of the day-length condition. Structural modeling of the Hd18 protein suggested that the non-synonymous substitution changed protein stability and function due to differences in interdomain hydrogen bond formation. Compared with those in Koshihikari, the expression levels of the flowering-time genes Early heading date 1 (Ehd1), Heading date 3a (Hd3a) and Rice flowering locus T1 (RFT1) were lower in a near-isogenic line with the Hayamasari Hd18 allele in a Koshihikari genetic background. We revealed that Hd18 acts as an accelerator in the rice flowering pathway under both short- and long-day conditions by elevating transcription levels of Ehd1 Gene expression analysis also suggested the involvement of MADS-box genes such as OsMADS50, OsMADS51 and OsMADS56 in the Hd18-associated regulation of Ehd1 These results suggest that, like FLD, its rice homolog accelerates flowering time but is involved in rice flowering pathways that differ from the autonomous pathways in Arabidopsis.


Assuntos
Flores/fisiologia , Histona Acetiltransferases/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histona Desacetilases/genética , Proteínas de Domínio MADS/genética , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Interferência de RNA
20.
Breed Sci ; 66(2): 309-18, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162502

RESUMO

The eating quality of cooked rice is important and determines its market price and consumer acceptance. To comprehensively describe the variation of eating quality in 183 rice germplasm accessions, we evaluated 33 eating-quality traits including amylose and protein contents, pasting properties of rice flour, and texture of cooked rice grains. All eating-quality traits varied widely in the germplasm accessions. Principal-components analysis (PCA) revealed that allelic differences in the Wx gene explained the largest proportion of phenotypic variation of the eating-quality traits. In 146 accessions of non-glutinous temperate japonica rice, PCA revealed that protein content and surface texture of the cooked rice grains significantly explained phenotypic variations of the eating-quality traits. An allelic difference based on simple sequence repeats, which was located near a quantitative trait locus (QTL) on the short arm of chromosome 3, was associated with differences in the eating quality of non-glutinous temperate japonica rice. These results suggest that eating quality is controlled by genetic factors, including the Wx gene and the QTL on chromosome 3, in Japanese rice accessions. These genetic factors have been consciously selected for eating quality during rice breeding programs in Japan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...