Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 14(1): 61, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785025

RESUMO

The 15q13.3 microdeletion syndrome is a genetic disorder characterized by a wide spectrum of psychiatric disorders that is caused by the deletion of a region containing 7 genes on chromosome 15 (MTMR10, FAN1, TRPM1, MIR211, KLF13, OTUD7A, and CHRNA7). The contribution of each gene in this syndrome has been studied using mutant mouse models, but no single mouse model recapitulates the whole spectrum of human 15q13.3 microdeletion syndrome. The behavior of Trpm1-/- mice has not been investigated in relation to 15q13.3 microdeletion syndrome due to the visual impairment in these mice, which may confound the results of behavioral tests involving vision. We were able to perform a comprehensive behavioral test battery using Trpm1 null mutant mice to investigate the role of Trpm1, which is thought to be expressed solely in the retina, in the central nervous system and to examine the relationship between TRPM1 and 15q13.3 microdeletion syndrome. Our data demonstrate that Trpm1-/- mice exhibit abnormal behaviors that may explain some phenotypes of 15q13.3 microdeletion syndrome, including reduced anxiety-like behavior, abnormal social interaction, attenuated fear memory, and the most prominent phenotype of Trpm1 mutant mice, hyperactivity. While the ON visual transduction pathway is impaired in Trpm1-/- mice, we did not detect compensatory high sensitivities for other sensory modalities. The pathway for visual impairment is the same between Trpm1-/- mice and mGluR6-/- mice, but hyperlocomotor activity has not been reported in mGluR6-/- mice. These data suggest that the phenotype of Trpm1-/- mice extends beyond that expected from visual impairment alone. Here, we provide the first evidence associating TRPM1 with impairment of cognitive function similar to that observed in phenotypes of 15q13.3 microdeletion syndrome.


Assuntos
Ansiedade/genética , Cromossomos Humanos Par 15/genética , Hipercinese/genética , Canais de Cátion TRPM/genética , Animais , Monoaminas Biogênicas/análise , Química Encefálica , Comportamento Exploratório , Estudos de Associação Genética , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Metilfenidato/farmacologia , Camundongos , Camundongos Knockout , Teste de Campo Aberto , Reflexo de Sobressalto , Teste de Desempenho do Rota-Rod , Deleção de Sequência , Interação Social , Memória Espacial , Natação , Canais de Cátion TRPM/deficiência , Transtornos da Visão/genética
2.
Biochem Biophys Res Commun ; 515(1): 222-227, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31146917

RESUMO

Adeno-associated virus (AAV) has been studied as a safe delivery tool for gene therapy of retinal blinding diseases such as Leber's congenital amaurosis (LCA). The tropism of recombinant AAV (rAAV) including its specificity and efficiency in targeting retinal cell types has been studied with native or engineered capsids, along with specific promoters. However, one of the rAAV serotypes, rAAV2/6, has not been well-studied based on a report of low infection efficiency in the retina. We investigated the tropism of several rAAVs by subretinal injection in the adult mouse and found that rAAV2/6 predominantly infected cone photoreceptors including the main spectral type. Our data suggest that subretinal injection with rAAV2/6 may provide both an efficacious and specific means of gene delivery to cone photoreceptors in murine retinas.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Doenças Retinianas/terapia , Animais , Vetores Genéticos/administração & dosagem , Injeções , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Camundongos da Linhagem 129 , Opsinas/genética , Opsinas/metabolismo , Retina/virologia , Células Fotorreceptoras Retinianas Cones/virologia , Doenças Retinianas/genética , Resultado do Tratamento
3.
Biol Pharm Bull ; 42(3): 343-347, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828065

RESUMO

With an increasing number of identified causative genes, the widespread use of gene therapy is quickly becoming feasible. Once a target gene is selected, it is important to have a cell delivery method that is both specific and efficient. Cell type specificity and high efficiency is particularly important for the treatment of retinal degeneration, since viruses are efficient gene delivery vehicles for the nervous system, but often bring with them non-specific infections. In this review, we focus on adeno-associated virus (AAV). Over the last few decades, AAV has become a leading choice for safe gene delivery, in part due to its replication deficiency in cells without a helper virus. Here, we summarize the tropism of recombinant AAV (rAAV) for various types of mammalian retinal neurons in relation to capsid serotype and administration method. We also include our recent findings on an AAV serotype that AAV was specifically infected mouse cone photoreceptors when delivered by subretinal administration.


Assuntos
Dependovirus , Marcação de Genes/métodos , Terapia Genética/métodos , Mamíferos , Degeneração Retiniana/terapia , Animais , Técnicas de Transferência de Genes
4.
Biomed Res Int ; 2018: 2963232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854741

RESUMO

TRPM1, the first member of the melanoma-related transient receptor potential (TRPM) subfamily, is the visual transduction channel downstream of metabotropic glutamate receptor 6 (mGluR6) on retinal ON bipolar cells (BCs). Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB). In both TRPM1 and mGluR6 KO mouse retinas, OFF but not ON BCs respond to light stimulation. Here we report an unexpected difference between TRPM1 knockout (KO) and mGluR6 KO mouse retinas. We used a multielectrode array (MEA) to record spiking in retinal ganglion cells (RGCs). We found spontaneous oscillations in TRPM1 KO retinas, but not in mGluR6 KO retinas. We performed a structural analysis on the synaptic terminals of rod ON BCs. Intriguingly, rod ON BC terminals were significantly smaller in TRPM1 KO retinas than in mGluR6 KO retinas. These data suggest that a deficiency of TRPM1, but not of mGluR6, in rod ON bipolar cells may affect synaptic terminal maturation. We speculate that impaired signaling between rod BCs and AII amacrine cells (ACs) leads to spontaneous oscillations. TRPM1 and mGluR6 are both essential components in the signaling pathway from photoreceptors to ON BC dendrites, yet they differ in their effects on the BC terminal and postsynaptic circuitry.


Assuntos
Receptores de Glutamato Metabotrópico/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Canais de Cátion TRPM/metabolismo , Células Amácrinas/metabolismo , Animais , Dendritos/metabolismo , Oftalmopatias Hereditárias/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Camundongos , Camundongos Knockout , Miopia/metabolismo , Cegueira Noturna/metabolismo , Células Bipolares da Retina/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...