Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomic Med ; 11(7): e2190, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37186429

RESUMO

Barth syndrome (BTHS) is an X-linked disorder characterized by cardiomyopathy, skeletal myopathy, and 3-methylglutaconic aciduria. The causative pathogenic variants for BTHS are in TAZ, which encodes a putative acyltransferase named tafazzin and is involved in the remodeling of cardiolipin in the inner mitochondrial membranes. Pathogenic variants in TAZ result in mitochondrial structural and functional abnormalities. We report a case of infantile BTHS with severe heart failure, left ventricular noncompaction, and lactic acidosis, having a missense c.640C>T (p.His214Tyr) variant in TAZ, which is considered a pathogenic variant based on the previously reported amino acid substitution at the same site (c.641A>G, p.His214Arg). However, in this previously reported case, heart function was compensated and not entirely similar to the present case. Silico prediction analysis suggested that c.640C>T could alter the TAZ messenger RNA (mRNA) splicing process. TAZ mRNAs in isolated peripheral mononuclear cells from the patient and in vitro splicing analysis using minigenes of TAZ found an 8 bp deletion at the 3' end of exon 8, which resulted in the formation of a termination codon in the coding region of exon 9 (H214Nfs*3). These findings suggest that splicing abnormalities should always be considered in BTHS.


Assuntos
Síndrome de Barth , Cardiomiopatias , Cardiopatias Congênitas , Insuficiência Cardíaca , Humanos , Síndrome de Barth/genética , Síndrome de Barth/patologia , Cardiomiopatias/genética , Cardiopatias Congênitas/genética , Insuficiência Cardíaca/genética , Fatores de Transcrição/genética
2.
PLoS One ; 7(10): e46634, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23077515

RESUMO

Hepatitis C virus (HCV) infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin's lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A) protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV) implied that NS5A was tyrosine phosphorylated by pervanadate (PV) treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST)-fusion proteins of various Src homology 2 (SH2) domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3) domain. Substitution of Arg(176) to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr(334) was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.


Assuntos
Linfócitos B/enzimologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Humanos , Ligantes , Fosforilação , Reação em Cadeia da Polimerase , Domínios de Homologia de src
3.
Genes Cells ; 16(9): 951-60, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21794028

RESUMO

Tyrosine phosphorylation of adaptor protein c-Abl-Src homology 3 (SH3) domain-binding protein-2 (3BP2, also referred to SH3BP2) positively regulates the B-cell antigen receptor (BCR)-mediated signal transduction, leading to the activation of nuclear factor of activated T cells (NFAT). Here we showed the effect of the proline to arginine substitution of 3BP2 in which is the most common mutation in patients with cherubism (P418R) on B-cell receptor signaling. Comparing to the wild type, overexpression of the mutant form of 3BP2 (3BP2-P416R, corresponding to P418R in human protein) enhanced BCR-mediated activation of NFAT. 3BP2-P416R increased the signaling complex formation with Syk, phospholipase C-γ2 (PLC-γ2), and Vav1. In contrast, 3BP2-P416R could not change the association with the negative regulator 14-3-3. Loss of the association mutant that was incapable to associate with 14-3-3 could not mimic BCR-mediated NFAT activation in Syk-deficient cells. Moreover, BCR-mediated phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was not affected by P416R mutation. These results showed that P416R mutation of 3BP2 causes the gain of function in B cells by increasing the interaction with specific signaling molecules.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Querubismo/genética , Querubismo/metabolismo , Mutação Puntual/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Proteínas 14-3-3/metabolismo , Animais , Linfócitos B/metabolismo , Células COS , Linhagem Celular , Chlorocebus aethiops , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase 4/metabolismo , Complexos Multiproteicos/metabolismo , Fatores de Transcrição NFATC/genética , Fosforilação , Ligação Proteica , Proteínas Tirosina Quinases/metabolismo , Quinase Syk , Ativação Transcricional , Tirosina/metabolismo
4.
J Agric Food Chem ; 59(10): 5595-601, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21486000

RESUMO

The palm fruit açaí is known to have potential health benefits due to its antioxidant scavenging capacities. Pretreatment of IgE-sensitized mouse primary cultured mast cells with açaí pulp resulted in the dramatic suppression of antigen-induced degranulation in a dose-dependent manner. Similarly, açaí suppressed IgE-mediated degranulation and transcription of the cytokine genes from a cultured mast cell line of rat basophilic leukemia (RBL)-2H3 cells. Açaí could selectively inhibit FcεRI signaling pathways. Furthermore, the FcεRI-mediated complementary signaling pathway was also suppressed by açaí. These results demonstrate that açaí is a potent inhibitor of IgE-mediated mast cell activation.


Assuntos
Arecaceae , Frutas , Imunoglobulina E/imunologia , Mastócitos/imunologia , Animais , Degranulação Celular , Linhagem Celular Tumoral , Citocinas/genética , Expressão Gênica , Leucemia Basofílica Aguda , Mastócitos/fisiologia , Ratos , Receptores de IgE/imunologia , Transdução de Sinais , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...