Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 790: 136895, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191793

RESUMO

Transient receptor potential melastatin 8 (TRPM8) is a cold-sensing thermoreceptor cation channel; however, its functional role in endotoxin-induced neuroinflammation remains unclear. In the present study, we investigated chronic sickness responses in TRPM8 knockout (KO) mice during lipopolysaccharide (LPS)-induced sepsis. The intraperitoneal administration of 5 mg/kg LPS generated longer-lasting hypothermia in TRPM8 KO mice than in wild-type (WT) mice. TRPM8 KO mice also exhibited longer-lasting declines in locomotor activity, body weight, and food and water intakes than WT mice upon LPS administration. In addition, LPS-induced decreases in the numbers of leucocytes and lymphocytes that persisted for a longer time in TRPM8 KO mice than in WT mice. The present results indicate TRPM8 attenuated chronic sickness responses in endotoxin-induced sepsis.


Assuntos
Sepse , Canais de Cátion TRPM , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sepse/induzido quimicamente , Sepse/complicações , Canais de Cátion TRPM/genética
2.
Physiol Behav ; 248: 113729, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131300

RESUMO

Transient receptor potential melastatin 8 (TRPM8) is a cold-sensing cation channel; however, its role in the transferal of information on peripheral cold sensation to the brain remains unclear. Therefore, we herein investigated cold avoidance behaviors and the neuronal activation of the hypothalamus and cerebral cortex in TRPM8 knockout (KO) mice to innocuous and nocuous cold stimuli. An innocuous cold stimulation at 15 °C decreased the duration of sleeping and increased that of rearing, climbing, and eating in WT mice, but it did not alter the duration of these behaviors in TRPM8 KO animals. The innocuous cold stimulation also increased the frequency of rearing, climbing, walking, and eating in WT mice, but it did not change that of these behaviors in TRPM8 KO animals. In contrast, a nocuous cold stimulation at 9 °C decreased the duration of sleeping and increased that of rearing and climbing in both WT and TRPM8 KO mice. The nocuous cold stimulation increased the frequency of rearing, climbing, and walking in WT and TRPM8 KO mice. Quantitative Fos immunohistochemistry showed that both innocuous and nocuous cold stimulations increased the number of Fos-positive neurons in temperature- and metabolism-associated hypothalamic regions in WT mice, but not in TRPM8 KO animals. The number of Fos-positive neurons was markedly increased in the primary motor and somatosensory cortices in WT and TRPM8 KO mice following the nocuous cold stimulation, but only increased in WT mice after the innocuous cold stimulation. Collectively, the present results indicate that TRPM8 plays a crucial role in activating autonomic hypothalamic neuronal circuits under innocuous and nocuous cold stimuli.


Assuntos
Canais de Cátion TRPM , Animais , Aprendizagem da Esquiva , Encéfalo/metabolismo , Temperatura Baixa , Camundongos , Camundongos Knockout , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Sensação Térmica/fisiologia
3.
Brain Behav Immun Health ; 16: 100291, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34589786

RESUMO

Transient receptor potential melastatin 8 (TRPM8) functions in the sensing of noxious and innocuous colds; however, its significance in pathogen-induced thermoregulation remains unclear. In the present study, we investigated the role of TRPM8 in the regulation of endotoxin-induced body temperature control. The peripheral administration of low-dose lipopolysaccharide (LPS) at 50 â€‹µg/kg generated fever in wild-type (WT) mice, whereas it caused hypothermia in TRPM8 knockout (KO) animals. LPS-induced sickness responses such as decrease in body weight, and food and water intake were not different between WT and TRPM8 KO mice. TRPM8 KO mice exhibited more severe hypothermia and lower locomotor activity following the peripheral administration of high-dose LPS at 5 â€‹mg/kg compared with WT ones. An intracerebroventricular (i.c.v.) injection of either LPS at 3.6 â€‹µg/kg or interleukin-1ß at 400 â€‹ng/kg elicited hypothermia in TRPM8 KO mice, in contrast to fever in WT animals. The peripheral administration of zymosan at 3 â€‹mg/kg also induced hypothermia in contrast to fever in WT mice. An i.c.v. injection of prostaglandin E2 at 16 or 160 â€‹nmol/kg induced normal fever in both WT and TRPM8 KO mice. Infrared thermography showed significant decline of the interscapular skin temperature that estimates temperature of the brown adipose tissue, regardless of no alteration of its temperature in WT animals. Fos immunohistochemistry showed stronger Fos activation of hypothalamic thermoregulation-associated nuclei in TRPM8 KO mice compared with WT animals following the peripheral administration of low-dose LPS. Therefore, the present study indicates that TRPM8 is necessary for switching between fever and hypothermia during endotoxin-induced inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...