Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(1): 1198-1205, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38048275

RESUMO

We present a novel approach to achieve n-type doping in graphene and create graphene p-n junctions through a photoinduced electron doping method using photobase generators (PBGs). The unique properties of PBGs allow us to spatially and temporally control the doping process via light activation. The selective irradiation of specific regions on the graphene film enables switching their doping from p- to n-type, as confirmed by changes in the electromotive force and Seebeck and Hall coefficients. We demonstrate a stable (over 2 months) high electron mobility exceeding 1000 cm2 V-1s-1 using Hall effect measurements. The precise control of doping and the creation of p-n junctions in graphene offer exciting possibilities for various electronic, optoelectronic, and thermoelectric applications. Furthermore, we fabricate transparent graphene thermocouples with a high electromotive force of approximately ca. 80 µV/K, which validates the reliability and effectiveness of our approach for temperature sensing applications. This work paves the way for high-performance graphene-based electronic devices via controlled doping and patterning techniques. These findings provide valuable insights for the practical implementation of graphene in various fields.

2.
Glob Chall ; 7(6): 2200207, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37287596

RESUMO

An isotropic thermo-electrochemical cell is introduced with a high Seebeck coefficient (S e) of 3.3 mV K-1 that uses a ferricyanide/ferrocyanide/guanidinium-based agar-gelated electrolyte. A power density of about 20 µW cm-2 is achieved at a temperature difference of about 10 K, regardless of whether the heat source is on the top or bottom section of the cell. This behavior is very different from that of cells with liquid electrolytes, which exhibit high anisotropy, and for which high S e values are achieved only by heating the bottom electrode. The guanidinium-containing gelatinized cell does not exhibit steady-state operation, but its performance recovers when disconnected from the external load, suggesting that the observed power drop under load conditions is not due to device degeneration. The large S e value and isotropic properties can mean that the novel system represents a major advancement from the standpoint of harvesting of low-temperature heat, such as body heat and solar thermal heat.

3.
Nat Commun ; 13(1): 3517, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725579

RESUMO

The preparation of air and thermally stable n-type carbon nanotubes is desirable for their further implementation in electronic and energy devices that rely on both p- and n-type material. Here, a series of guanidine and amidine bases with bicyclic-ring structures are used as n-doping reagents. Aided by their rigid alkyl functionality and stable conjugate acid structure, these organic superbases can easily reduce carbon nanotubes. n-Type nanotubes doped with guanidine bases show excellent thermal stability in air, lasting for more than 6 months at 100 °C. As an example of energy device, a thermoelectric p/n junction module is constructed with a power output of ca. 4.7 µW from a temperature difference of 40 °C.

4.
RSC Adv ; 12(11): 6748-6754, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35424629

RESUMO

This paper shows how protonated 3,4-ethylene dioxythiophene moieties can be used as an end group to make organic conductors. An organic semiconductor 2,5-bis(5-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene is designed and synthesized. This molecule could be doped by protonic acid in both solution and solid-state, resulting in a broad absorption in the near-infrared range corresponding to polaron and bipolaron absorption. Electrical conductivity of ca. 0.1 S cm-1 was obtained at 100 °C (to avoid the water uptake by the acid). The adducts with protons bound at the end-thiophene α-position were confirmed by 1H Nuclear Magnetic Resonance spectra.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35075902

RESUMO

Ferricyanide/ferrocyanide/guanidinium-based thermoelectrochemical cells have been investigated under different loading conditions in this work. Compared with ferricyanide/ferrocyanide-based devices, the device with guanidinium-added electrolytes shows higher power and energy densities. We observed that the enhanced performance is not due to the ionic Seebeck effect of guanidinium but because of the configuration entropy change resulting from the selective binding of Gdm+ to Fe(CN)64-. However, the device with guanidinium-added electrolyte does not show steady-state operation. The two possible reasons include (1) the difficult diffusion of Fe(CN)63- into the crystal layer of (Gdm+)n[Fe(CN)64-] at the hot electrode and (2) the difficult precipitation of (Gdm+)n[Fe(CN)64-] formed at the cold side upon the binding of the reduced Fe(CN)64- with Gdm+. Nevertheless, the performance recovers once the device is disconnected from the external loading. Due to the high thermopower after adding guanidinium, we successfully fabricate self-powered sensors by connecting four flexible cells in series. The sensors can transfer humidity, temperature, and air pressure data wirelessly using body heat. Therefore, ferricyanide/ferrocyanide/guanidinium is a promising electrolyte material for applications of low-grade energy harvesting.

6.
ACS Appl Mater Interfaces ; 12(39): 43674-43683, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32935547

RESUMO

Thermoelectric power generation from waste heat is an important component of future sustainable development. Ion-conducting materials are promising candidates because of their high Seebeck coefficients. This study demonstrates that ionic hydrogels based on imidazolium chloride salts exhibit outstanding Seebeck coefficients of up to 10 mV K-1. Along with their relatively high ionic conductivities (1.6 mS cm-1) and extremely low thermal conductivities (∼0.2 W m-1 K-1), these hydrogels have good potential for use in heat recovery systems. The voltage behavior in response to temperature difference (stable or transient) differs significantly depending on the metal electrode material. We evaluated the electrode-dependent temperature sensitivity of the double layer capacitance of these hydrogels, which revealed that the thermally induced polarization of ions at the interface is one of the main contributors to the thermovoltage. Our results demonstrate the potential capability for ion and metal interactions to be used as an effective baseline for exploring ionic thermoelectric materials and devices. The developed thermoelectric supercapacitor exhibits reversible charging-discharging behavior under repeated disconnecting-connecting of an external load with a constant temperature difference, which offers a novel strategy for heat-to-electricity energy conversion from steady-temperature heat sources.

7.
Phys Chem Chem Phys ; 20(33): 21262-21268, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29952385

RESUMO

The low volatility of ionic liquids (ILs) is one of their most interesting physico-chemical properties; however, the general understanding of their evaporation dynamics under vacuum is still lagging. Here, we studied the thermodynamics of IL evaporation by employing thermogravimetry (TG) measurements under vacuum. The thermodynamic parameters of ILs, such as the evaporation onset temperatures, enthalpies, entropies, saturation vapor pressures, and boiling points were quantified by analyzing the TG data. The obtained evaporation enthalpies (110-140 kJ mol-1) were higher than those of typical molecular liquids, and the entropies (>88 J mol-1 K-1) suggested that they are exceptions of the Trouton's rule. The obtained Clausius-Clapeyron equations demonstrated that the saturation vapor pressures of ILs only depend on temperature. Further, we derived the empirical equation for estimating the upper limit temperature of the liquid phase of IL under given external pressures. Using the evaporation behaviors of referential normal alkanes and charge-transfer complex and the evaporation entropies of the ILs, the vaporized IL structure was thermodynamically modelled. The ILs were found to evaporate as ion pairs, instead of as individual ions or higher-ordered cluster structures. By comparing a series of ILs with various cations and a fixed anion, it was found that the IL evaporation dynamics under vacuum is strongly and systematically affected by their chemical structures, charge balances between the cations and the anions, molecular weights, and the higher-ordered structures including polar and non-polar regions. Our concept, measurement method, and equation can be extended to other ILs and low-volatile liquids under vacuum, and help with the design of ILs with higher thermal stabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...