Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 139: 237-43, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26722820

RESUMO

The dispersion of single-walled carbon nanotubes (SWNT) in aqueous solutions of biological materials enables the production of bulk films and fibers that combine natural biological activity with SWNT's intrinsic mechanical, thermal, and electrical properties. In this work, we report the rheology and phase behavior of concentrated lysozyme (LSZ)/SWNT dispersions. Even at low concentration, the LSZ's globular structure causes a deviation from the rheological behavior expected of rigid rods such as SWNT. With increasing concentration, stabilized SWNT typically form lyotropic liquid crystalline phases. However, in this case, the LSZ results in depletion attraction and the formation of large dense SWNT aggregates surrounded by a LSZ network. At intermediate concentrations, the microstructure and rheological properties are a complex function of the initial dispersion state, the absolute concentrations, and the LSZ to SWNT ratio. The rheological effects of concentrating mixtures comprised of aggregates, a range of bundle sizes, and individual SWNT were compared to the effects of concentrating supernatants comprised solely of individual SWNT and small bundles. In general, lysozyme concentration has the greatest impact on dispersion viscoelasticity. However, the inherent viscosity was a function of SWNT concentration; data from both initial mixtures and supernatants spanning two orders of magnitude in concentration could be collapsed onto a single master curve. This work provides a foundation for exploring the behavior of other globular protein-SWNT dispersions.


Assuntos
Cristais Líquidos/química , Muramidase/química , Nanotubos de Carbono/química , Composição de Medicamentos , Elasticidade , Floculação , Cristais Líquidos/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Transição de Fase , Conformação Proteica , Reologia , Soluções , Termodinâmica , Viscosidade , Água
2.
ACS Macro Lett ; 3(1): 77-79, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35651113

RESUMO

Transparent antibacterial films were produced by casting concentrated dispersions of lysozyme (LSZ), single-walled carbon nanotubes (SWNTs), and polyvinyl alcohol (PVA). The initial SWNT dispersion state had a significant influence on the films' mechanical properties. Films containing 9 wt % bundled SWNTs had six times higher Young's modulus than control films produced without SWNTs. Removal of SWNT bundles by centrifugation prior to concentrating the dispersions resulted in films that contained only 4.5 wt % SWNT but had over eight times higher Young's modulus than the control films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...