Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Zool A Ecol Genet Physiol ; 321(1): 1-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24123857

RESUMO

Exposure of organisms to microgravity can induce morphological, physiological, and behavioral modifications which normalize after re-entry in 1g-condition within hours to few weeks. Development of Xenopus laevis tadpoles, their metamorphosis, and adults' growth were monitored for 3 years after their flight on the 12-day Soyuz mission TMA13 to the International Space Station. At onset of microgravity, tadpoles had just developed the hind limb (stage 47) or forelimb bud (stage 50). Recordings during the first 4 days after landing revealed no differences of developmental progresses and growth between flight and ground tadpoles. Further development and growth were strongly retarded in all animals; nevertheless, significant differences appeared between flight and ground groups during this postflight period. They include (1) acceleration of development in stage 47 but not stage 50 flight tadpoles; (2) earlier metamorphosis of stage 47 flight tadpoles compared to their 1g-ground controls while stage 50 flight tadpoles metamorphosed later than their ground controls; (3) maintenance of a tail during the juvenile stage exclusively in some stage 47 flight animals, and (4) accelerated growth of stage 47 male flight toads but retarded growth of stage 50 flight males compared to the respective 1g-ground control males. No difference of growth was detected between flight and ground females after metamorphosis. All differences between flight and ground animals disappeared 1 year after landing. We conclude (1) that limited spatial and nutritional conditions during the mission period caused developmental retardation, and (2) that the thyroid gland of Xenopus is susceptible to spatial environment, in particular, during the period of beginning activation.


Assuntos
Larva/crescimento & desenvolvimento , Metamorfose Biológica , Ausência de Peso , Xenopus laevis/crescimento & desenvolvimento , Animais , Feminino , Masculino , Voo Espacial , Glândula Tireoide/crescimento & desenvolvimento
2.
J Exp Biol ; 216(Pt 4): 733-41, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23077160

RESUMO

Development of the amphibian vestibular organ is regulated by molecular and neuronal mechanisms and by environmental input. The molecular component includes inductive signals derived from neural tissue of the hindbrain and from the surrounding mesoderm. The integrity of hindbrain patterning, on the other hand, depends on instructive signals from the isthmus organizer of the midbrain, including the transcription factor XTcf-4. If the development of the vestibular system depends on the integrity of the isthmus as the organizing centre, suppression of isthmus maintenance should modify vestibular morphology and function. We tested this hypothesis by downregulation of the transcription factor XTcf-4. 10 pmol l(-1) XTcf-4-specific antisense morpholino oligonucleotide was injected in one blastomere of two-cell-stage embryos of Xenopus laevis. For reconstitution experiments, 500 pg mRNA of the repressing XTcf-4A isoform or the activating XTcf-4C isoform were co-injected. Overexpression experiments were included using the same isoforms. Otoconia formation and vestibular controlled behaviour such as the roll-induced vestibuloocular reflex (rVOR) and swimming were recorded two weeks later. In 50% of tadpoles, downregulation of XTcf-4 induced (1) a depression of otoconia formation accompanied by a reduction of the rVOR, (2) abnormal tail development and (3) loop swimming behaviour. (4) All effects were rescued by co-injection of XTcf-4C but not, or only partially, by XTcf-4A. (5) Overexpression of XTcf-4A caused similar morphological and rVOR modifications as XTcf-4 depletion, while overexpression of XTcf-4C had no effect. Because XTcf-4C has been described as an essential factor for isthmus development, we postulate that the isthmus is strongly involved in vestibular development.


Assuntos
Técnicas de Silenciamento de Genes , Reflexo Vestíbulo-Ocular/fisiologia , Fatores de Transcrição/metabolismo , Xenopus laevis/metabolismo , Animais , Comportamento Animal , Western Blotting , Larva/metabolismo , Membrana dos Otólitos/fisiologia , Reação em Cadeia da Polimerase , Natação/fisiologia , Xenopus laevis/anatomia & histologia
3.
J Exp Zool A Ecol Genet Physiol ; 317(6): 333-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22570271

RESUMO

Stimulus deprivation or stimulus augmentation can induce long-lasting modifications to sensory and motor systems. If deprivation is effective only during a limited period of life this phase is called "critical period." A critical period was described for the development of the roll-induced vestibuloocular reflex (rVOR) of Xenopus laevis using spaceflights. Spaceflight durations and basic conditions of Xenopus' development did not make it possible to answer the question whether exposure of the immature vestibular organ to weightlessness affects rVOR development. The embryonic development of Pleurodeles waltl is slow enough to solve this problem because the rVOR cannot be induced before 15 dpf. Stage 20-21 embryos (4 dpf) were exposed to microgravity during a 10-day spaceflight, or to 3g hypergravity following the same time schedule. After termination of altered gravity, the rVOR was recorded twice in most animals. The main observations were as follows: (1) after the first rVOR appearance at stage 37 (16 dpf), both rVOR gain and amplitude increased steadily up to saturation levels of 0.22 and 20°, respectively. (2) Three days after termination of microgravity, flight and ground larvae showed no rVOR; 1 day later, the rVOR could be induced only in ground larvae. Differences disappeared after 3 weeks. (3) For 10 days after 3g exposure, rVOR development was similar to that of 1g-controls but 3 weeks later, 3g-larvae showed a larger rVOR than 1g-controls. These observations indicate that the immature vestibular system is transiently sensitive to microgravity exposure and that exposure of the immature vestibular system to hypergravity leads to a slowly growing vestibular sensitization.


Assuntos
Larva/fisiologia , Pleurodeles/embriologia , Voo Espacial , Vestíbulo do Labirinto/fisiologia , Ausência de Peso , Animais , Vestíbulo do Labirinto/embriologia
4.
J Exp Zool A Ecol Genet Physiol ; 315(9): 505-11, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21866581

RESUMO

Sensory systems are characterized by developmental periods during which they are susceptible to environmental modifications, in particular to sensory deprivation. The experiment, XENOPUS, on Soyuz in 2008 was the fourth space flight experiment since 1993 to explore whether tail and vestibular development of Xenopus laevis has a gravity-related critical period. During this flight, tadpoles were used that had developed either the early hindlimb (stage 47) or forelimb bud (stage 50) at launch of the spacecraft. The results revealed (1) no impact of microgravity on the development of the roll-induced vestibuloocular reflex (rVOR) in both stages and (2) a stage-related sensitivity of tail development to microgravity exposure. These results were combined and compared with observations from space flights on other orbital platforms. The combined data revealed (1) a narrow gravity-related critical period for rVOR development close to the period of the first appearance of the reflex and (2) a longer one for tail development lasting from the early tail bud to the early forelimb bud stage.


Assuntos
Reflexo Vestíbulo-Ocular/fisiologia , Cauda/crescimento & desenvolvimento , Vestíbulo do Labirinto/crescimento & desenvolvimento , Ausência de Peso , Xenopus laevis/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento , Voo Espacial , Cauda/patologia , Fatores de Tempo
5.
J Exp Biol ; 209(Pt 15): 2847-58, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16857868

RESUMO

UNLABELLED: During space flights, tadpoles of the clawed toad Xenopus laevis occasionally develop upward bended tails (tail lordosis). The tail lordosis disappears after re-entry to 1g within a couple of days. The mechanisms responsible for the induction of the tail lordosis are unknown; physical conditions such as weight de-loading or physiological factors such as decreased vestibular activity in microgravity might contribute. Microgravity (microg) also exerts significant effects on the roll-induced vestibuloocular reflex (rVOR). The rVOR was used to clarify whether tail lordosis is caused by physiological factors, by correlating the occurrence of microg-induced tail lordosis with the extent of microg-induced rVOR modifications. Post-flight recordings from three space flights (D-2 Spacelab mission, STS-55 in 1993; Shuttle-to-Mir mission SMM-06, STS-84 in 1997; French Soyuz taxi flight Andromède to ISS in 2001) were analyzed in these experiments. At onset of microgravity, tadpoles were at stages 25-28, 33-36 or 45. Parameters tested were rVOR gain (ratio between the angular eye movement and the lateral 30 degrees roll) and rVOR amplitude (maximal angular postural change of the eyes during a 360 degrees lateral roll). A ratio of 22-84% of tadpoles developed lordotic tails, depending on the space flight. The overall observation was that the rVOR of tadpoles with normal tails was either not affected by microgravity, or it was enhanced. In contrast, the rVOR of lordotic animals always revealed a depression. In particular, during post-flight days 1-11, tadpoles with lordotic tails from all three groups (25-28, 33-36 and 45) showed a lower rVOR gain and amplitude than the 1g-controls. The rVOR gain and amplitude of tadpoles from the groups 25-28 and 33-36 that developed normal tails was not affected by microgravity while the rVOR of microg-tadpoles from the stage-45 group with normal tails revealed a significant rVOR augmentation. IN CONCLUSION: (1) the vestibular system of tadpoles with lordotic tails is developmentally retarded by microgravity; (2) after a critical status of vestibular maturation obtained during the appearance of first swimming, microgravity activates an adaptation mechanism that causes a sensitization of the vestibular system.


Assuntos
Reflexo Vestíbulo-Ocular/fisiologia , Cauda/anatomia & histologia , Ausência de Peso , Xenopus laevis/anatomia & histologia , Xenopus laevis/fisiologia , Animais
7.
Adv Space Biol Med ; 9: 133-71, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14631632

RESUMO

Gravity related behavior and the underlying neuronal networks are the most suitable model systems to study basic effects of altered gravitational input on the development of neuronal systems. A feature of sensory and motor systems is their susceptibility to modifications of their adequate physical and/or chemical stimuli during development. This discovery led to the formulation about critical periods, which defines the period of susceptibility during post-embryonal development. Critical periods can be determined by long-lasting modifications of the stimulus input for the gravity sensory system (GSS). Techniques include: (1) destruction of the gravity sense organ so that the gravity cannot be detected any longer and the central neuronal network of the GSS is deprived of gravity related information, (2) loading or deloading of parts of the body by weights or counterweights, respectively, which compensates for the gravitational pull, and (3) absence or augmentation of the gravitational environment per se by the exposure of organisms to microgravity during spaceflights or to hypergravity by centrifugation. Most data came from studies on compensatory eye or head movements in the clawed toad Xenopus laevis, the cichlid fish Oreochromis mossambicus, and crickets (Acheta domesticus, Gryllus bimaculatus). The responses are induced by a roll or pitch stimulation of the gravity sense organs, but are also affected by sensory inputs from proprioreceptors and eyes. The development of these compensatory eye and head responses reveals species-specific time courses. Based on experiments using spaceflights, centrifugation, lesion and loading or deloading, all species revealed a significant susceptibility to modifications of the gravity sensory input during development. Behavioral responses were depressed (Xenopus) or augmented (Xenopus, Oreochronis) by microgravity, and depressed by hypergravity except in crickets. In Acheta, however, the sensitivity of its position sensitive neuron PSI was reduced by microgravity. After termination of the period of modified gravity sensory input, all behavioral and physiological modifications disappeared, in some preparations such as the PSI of Acheta or the eye response in Xenopus, however, delayed after exposure to hypergravity. Irreversible modifications were rare; one example were malformations of the body of Xenopus tadpoles caused by lesion induced deprivation. Several periods of life such as the period of hatching or first appearance of gravity related reflexes revealed a specific sensitivity to altered gravity. Although all studies gave clear evidences for a basic sensitivity of developing GSSs to long-lasting modifications of the gravity sensory input, clear arguments for the existence of a critical period in the development of the sense of gravity are still missing. It has to take into consideration that during long-term exposures, adaptation processes take place which are guided by central physiological and genetically determined set points. The International Space Station (ISS) is the necessary platform of excellence if biological research is focussed on the analysis of long-term space effects on organisms.


Assuntos
Sensação Gravitacional/fisiologia , Gravidade Alterada , Sensação/fisiologia , Órgãos dos Sentidos/crescimento & desenvolvimento , Animais , Gryllidae/fisiologia , Atividade Motora/fisiologia , Tilápia/fisiologia , Xenopus laevis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...