Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 136(13): 134315, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22482560

RESUMO

Negative-ion photoelectron spectroscopy and ab initio simulations are used to study the variation in magnetic structure in Mn(x)O(y) (x = 3, 4[semicolon] y = 1, 2) clusters. The ferrimagnetic and antiferromagnetic ground-state structures of Mn(x)O(y) are 0.16-1.20 eV lower in energy than their ferromagnetic isomers. The presence of oxygen thus stabilizes low-spin isomers relative to the preferred high-spin ordering of bare Mn(3) and Mn(4). Each cluster has a preferred overall magnetic moment, and no evidence is seen of competing states with different spin multiplicities. However, non-degenerate isomags, which possess the same spin multiplicity but different arrangements of local moments, do contribute additional features and peak broadening in the photoelectron spectra. Proper accounting for all possible isomags is shown to be critical for accurate computational prediction of the spectra.

2.
J Phys Chem B ; 109(1): 44-7, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16850982

RESUMO

Temperature programmed desorption (TPD), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM) have been used to characterize molybdenum carbide nanoparticles prepared on a Au(111) substrate. The MoC(x) nanoparticles were formed by Mo metal deposition onto a reactive multilayer of ethylene, which was physisorbed on a Au(111) substrate at low temperatures (<100 K). The resulting clusters have an average diameter of approximately 1.5 nm and aggregate in the fcc troughs located on either side of the elbows of the reconstructed Au(111) surface. Core level XPS shows that the electronic environment of the Mo and C atoms in the nanoparticles is similar to that found in Mo(2)C(0001) single crystals and carburized Mo metal surfaces. Peak intensities in XPS and AES spectra were used to estimate an average Mo/C atomic ratio of 1.2 +/- 0.3 for nanoparticles annealed above 600 K.


Assuntos
Compostos Inorgânicos de Carbono/química , Etilenos/química , Ouro/química , Molibdênio/química , Nanopartículas/química , Adsorção , Microanálise por Sonda Eletrônica , Microscopia de Tunelamento , Sensibilidade e Especificidade , Espectrofotometria , Propriedades de Superfície , Temperatura , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...