Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(5): 221023, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37234505

RESUMO

The eggs of avian obligate brood-parasitic species have multiple adaptations to deceive hosts and optimize development in host nests. While the structure and composition of the eggshell in all birds is essential for embryo growth and protection from external threats, parasitic eggs may face specific challenges such as high microbial loads, rapid laying and ejection by the host parents. We set out to assess whether eggshells of avian brood-parasitic species have either (i) specialized structural properties, to meet the demands of a brood-parasitic strategy or (ii) similar structural properties to eggs of their hosts, due to the similar nest environment. We measured the surface topography (roughness), wettability (how well surfaces repel water) and calcium content of eggshells of a phylogenetically and geographically diverse range of brood-parasitic species (representing four of the seven independent lineages of avian brood-parasitic species), their hosts and close relatives of the parasites. These components of the eggshell structure have been demonstrated previously to influence such factors as the risk of microbial infection and overall shell strength. Within a phylogenetically controlled framework, we found no overall significant differences in eggshell roughness, wettability and calcium content between (i) parasitic and non-parasitic species, or (ii) parasitic species and their hosts. Both the wettability and calcium content of the eggs from brood-parasitic species were not more similar to those of their hosts' eggs than expected by chance. By contrast, the mean surface roughness of the eggs of brood-parasitic species was more similar to that of their hosts' eggs than expected by chance, suggesting brood-parasitic species may have evolved to lay eggs that match the host nest environment for this trait. The lack of significant overall differences between parasitic and non-parasitic species, including hosts, in the traits we measured, suggests that phylogenetic signal, as well as general adaptations to the nest environment and for embryo development, outweigh any influence of a parasitic lifestyle on these eggshell properties.

2.
BMC Microbiol ; 23(1): 40, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36765278

RESUMO

BACKGROUND: In contrast with macroorganisms, that show well-documented biogeographical patterns in distribution associated with local adaptation of physiology, behavior and life history, strong biogeographical patterns have not been found for microorganisms, raising questions about what determines their biogeography. Thus far, large-scale biogeographical studies have focused on free-living microbes, paying little attention to host-associated microbes, which play essential roles in physiology, behavior and life history of their hosts. Investigating cloacal gut microbiota of closely-related, ecologically similar free-living songbird species (Alaudidae, larks) inhabiting desert, temperate and tropical regions, we explored influences of geographical location and host species on α-diversity, co-occurrence of amplicon sequence variants (ASVs) and genera, differentially abundant and dominant bacterial taxa, and community composition. We also investigated how geographical distance explained differences in gut microbial community composition among larks. RESULTS: Geographic location did not explain variation in richness and Shannon diversity of cloacal microbiota in larks. Out of 3798 ASVs and 799 bacterial genera identified, 17 ASVs (< 0.5%) and 43 genera (5%) were shared by larks from all locations. Desert larks held fewer unique ASVs (25%) than temperate zone (31%) and tropical larks (34%). Five out of 33 detected bacterial phyla dominated lark cloacal gut microbiomes. In tropical larks three bacterial classes were overrepresented. Highlighting the distinctiveness of desert lark microbiota, the relative abundances of 52 ASVs differed among locations, which classified within three dominant and 11 low-abundance phyla. Clear and significant phylogenetic clustering in cloacal microbiota community composition (unweighted UniFrac) showed segregation with geography and host species, where microbiota of desert larks were distinct from those of tropical and temperate regions. Geographic distance was nonlinearly associated with pairwise unweighted UniFrac distances. CONCLUSIONS: We conclude that host-associated microbiota are geographically structured in a group of widespread but closely-related bird species, following large-scale macro-ecological patterns and contrasting with previous findings for free-living microbes. Future work should further explore if and to what extent geographic variation in host-associated microbiota can be explained as result of co-evolution between gut microbes and host adaptive traits, and if and how acquisition from the environmental pool of bacteria contributes to explaining host-associated communities.


Assuntos
Microbioma Gastrointestinal , Microbiota , Passeriformes , Animais , Filogenia , Bactérias/genética
3.
Proc Biol Sci ; 288(1958): 20210219, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34493075

RESUMO

Collaboration and diversity are increasingly promoted in science. Yet how collaborations influence academic career progression, and whether this differs by gender, remains largely unknown. Here, we use co-authorship ego networks to quantify collaboration behaviour and career progression of a cohort of contributors to biennial International Society of Behavioral Ecology meetings (1992, 1994, 1996). Among this cohort, women were slower and less likely to become a principal investigator (PI; approximated by having at least three last-author publications) and published fewer papers over fewer years (i.e. had shorter academic careers) than men. After adjusting for publication number, women also had fewer collaborators (lower adjusted network size) and published fewer times with each co-author (lower adjusted tie strength), albeit more often with the same group of collaborators (higher adjusted clustering coefficient). Authors with stronger networks were more likely to become a PI, and those with less clustered networks did so more quickly. Women, however, showed a stronger positive relationship with adjusted network size (increased career length) and adjusted tie strength (increased likelihood to become a PI). Finally, early-career network characteristics correlated with career length. Our results suggest that large and varied collaboration networks are positively correlated with career progression, especially for women.


Assuntos
Autoria , Bibliometria , Feminino , Humanos , Masculino , Probabilidade
4.
Evolution ; 75(8): 1906-1919, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165186

RESUMO

In mimicry systems, receivers discriminate between the stimuli of models and mimics. Weber's Law of proportional processing states that receiver discrimination is based on proportional, not absolute, differences between stimuli. Weber's Law operates in a variety of taxa and modalities, yet it has largely been ignored in the context of mimicry, despite its potential relevance to whether receivers can discriminate models from mimics. Specifically, Weber's Law implies that for a given difference in stimulus magnitude between a model and mimic, as stimulus magnitudes increase, the mimic will be less discriminable from their model. This implies that mimics should benefit when stimulus magnitudes are high, and that high stimulus magnitudes will reduce selection for mimetic fidelity. Whether models benefit from high stimulus magnitudes depends on whether mimicry is honest or deceptive. We present four testable predictions about evolutionary trajectories of models and mimics based on this logic. We then provide a framework for testing whether receiver discrimination adheres to Weber's Law and illustrate it using coevolutionary examples and case studies from avian brood parasitism. We conclude that, when studying mimicry systems, researchers should consider whether receiver perception conforms to Weber's Law, because it could drive stimulus evolution in counterintuitive directions.

5.
Evol Lett ; 3(2): 185-197, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31007944

RESUMO

Mutually beneficial interactions between species play a key role in maintaining biodiversity and ecosystem function. Nevertheless, such mutualisms can erode into antagonistic interactions. One explanation is that the fitness costs and benefits of interacting with a partner species vary among individuals. However, it is unclear why such variation exists. Here, we demonstrate that social behavior within species plays an important, though hitherto overlooked, role in determining the relative fitness to be gained from interacting with a second species. By combining laboratory experiments with field observations, we report that conflict within burying beetles Nicrophorus vespilloides influences the fitness that can be gained from interacting with the mite Poecilochirus carabi. Beetles transport these mites to carrion, upon which both species breed. We show that mites help beetles win intraspecific contests for this scarce resource: mites raise beetle body temperature, which enhances beetle competitive prowess. However, mites confer this benefit only upon smaller beetles, which are otherwise condemned by their size to lose contests for carrion. Larger beetles need no assistance to win a carcass and then lose reproductive success when breeding alongside mites. Thus, the extent of mutualism is dependent on an individual's inability to compete successfully and singlehandedly with conspecifics. Mutualisms degrade into antagonism when interactions with a partner species start to yield a net fitness loss, rather than a net fitness gain. This study suggests that interactions with conspecifics determine where this tipping point lies.

6.
Ibis (Lond 1859) ; 157(3): 626-630, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26300559

RESUMO

Hosts of brood-parasitic birds typically evolve anti-parasitism defences, including mobbing of parasitic intruders at the nest and the ability to recognize and reject foreign eggs from their clutches. The Greater Honeyguide Indicator indicator is a virulent brood parasite that punctures host eggs and kills host young, and accordingly, a common host, the Little Bee-eater Merops pusillus frequently rejects entire clutches that have been parasitized. We predicted that given the high costs of accidentally rejecting an entire clutch, and that the experimental addition of a foreign egg is insufficient to induce this defence, Bee-eaters require the sight of an adult parasite near the nest as an additional cue for parasitism before they reject a clutch. We found that many Little Bee-eater parents mobbed Greater Honeyguide dummies while ignoring barbet control dummies, showing that they recognized them as a threat. Surprisingly, however, neither a dummy Honeyguide nor the presence of a foreign egg, either separately or in combination, was sufficient to stimulate egg rejection.

8.
Oecologia ; 177(1): 281-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385541

RESUMO

Investment in immune defences is predicted to covary with a variety of ecologically and evolutionarily relevant axes, with pace of life and environmental antigen exposure being two examples. These axes may themselves covary directly or inversely, and such relationships can lead to conflicting predictions regarding immune investment. If pace of life shapes immune investment then, following life history theory, slow-living, arid zone and tropical species should invest more in immunity than fast-living temperate species. Alternatively, if antigen exposure drives immune investment, then species in antigen-rich tropical and temperate environments are predicted to exhibit higher immune indices than species from antigen-poor arid locations. To test these contrasting predictions we investigated how variation in pace of life and antigen exposure influence immune investment in related lark species (Alaudidae) with differing life histories and predicted risks of exposure to environmental microbes and parasites. We used clutch size and total number of eggs laid per year as indicators of pace of life, and aridity, and the climatic variables that influence aridity, as correlates of antigen abundance. We quantified immune investment by measuring four indices of innate immunity. Pace of life explained little of the variation in immune investment, and only one immune measure correlated significantly with pace of life, but not in the predicted direction. Conversely, aridity, our proxy for environmental antigen exposure, was predictive of immune investment, and larks in more mesic environments had higher immune indices than those living in arid, low-risk locations. Our study suggests that abiotic environmental variables with strong ties to environmental antigen exposure can be important correlates of immunological variation.


Assuntos
Antígenos , Meio Ambiente , Imunidade Inata , Passeriformes/imunologia , Reprodução , Doenças dos Animais/microbiologia , Doenças dos Animais/parasitologia , Animais , Evolução Biológica , Tamanho da Ninhada , Secas , Ecologia , Ecossistema , Imunidade Inata/genética , Estágios do Ciclo de Vida , Óvulo , Reprodução/genética , Água
10.
Artigo em Inglês | MEDLINE | ID: mdl-23388210

RESUMO

To better understand how silkmoth cocoons maintain the correct internal moisture levels for successful pupation, we examined cocoons from the long-domesticated mulberry silkmoth Bombyx mori as well as from two wild silkmoth species, Antheraea pernyi and Philosamia cynthia ricini. We determined fluid-independent values for the porosity, tortuosity and permeability of the inner and outer surfaces of cocoons. Permeabilities were low and, with the exception of A. pernyi cocoons, inner surfaces were less permeable than outer surfaces. B. mori cocoons exhibited the highest permeability overall, but only at the outer surface, while A. pernyi cocoons appeared to show different patterns from the other species tested. We discuss our findings in light of the ecophysiology of the various species and propose a 'tortuous path' model to help explain our results. The model describes how the structure of the inner and outer layers of the cocoon allows it to function as both a humidity trap and a waterproof barrier, providing optimum conditions for the successful development of the pupa.


Assuntos
Bombyx/fisiologia , Animais , Umidade , Mariposas/fisiologia , Permeabilidade , Porosidade , Pupa/fisiologia
11.
Physiol Biochem Zool ; 85(5): 504-15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22902379

RESUMO

Immune defense may vary as a result of trade-offs with other life-history traits or in parallel with variation in antigen levels in the environment. We studied lark species (Alaudidae) in the Arabian Desert and temperate Netherlands to test opposing predictions from these two hypotheses. Based on their slower pace of life, the trade-off hypothesis predicts relatively stronger immune defenses in desert larks compared with temperate larks. However, as predicted by the antigen exposure hypothesis, reduced microbial abundances in deserts should result in desert-living larks having relatively weaker immune defenses. We quantified host-independent and host-dependent microbial abundances of culturable microbes in ambient air and from the surfaces of birds. We measured components of immunity by quantifying concentrations of the acute-phase protein haptoglobin, natural antibody-mediated agglutination titers, complement-mediated lysis titers, and the microbicidal ability of whole blood. Desert-living larks were exposed to significantly lower concentrations of airborne microbes than temperate larks, and densities of some bird-associated microbes were also lower in desert species. Haptoglobin concentrations and lysis titers were also significantly lower in desert-living larks, but other immune indexes did not differ. Thus, contrary to the trade-off hypothesis, we found little evidence that a slow pace of life predicted increased immunological investment. In contrast, and in support of the antigen exposure hypothesis, associations between microbial exposure and some immune indexes were apparent. Measures of antigen exposure, including assessment of host-independent and host-dependent microbial assemblages, can provide novel insights into the mechanisms underlying immunological variation.


Assuntos
Ecossistema , Imunidade Inata , Aves Canoras/imunologia , Aves Canoras/microbiologia , Microbiologia do Ar , Animais , Análise Química do Sangue , Candida albicans/imunologia , Contagem de Colônia Microbiana , Clima Desértico , Escherichia coli/imunologia , Feminino , Haptoglobinas/metabolismo , Masculino , Países Baixos , Arábia Saudita , Aves Canoras/metabolismo , Especificidade da Espécie , Staphylococcus aureus/imunologia
12.
J Exp Biol ; 215(Pt 21): 3734-41, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22811245

RESUMO

Most birds rely on flight for survival. Yet as an energetically taxing and physiologically integrative process, flight has many repercussions. Studying pigeons (Columba livia) and employing physiological and immunological indices that are relevant to ecologists working with wild birds, we determined what, if any, acute immune-like responses result from bouts of intense, non-migratory flight. We compared the effects of flight with the effects of a simulated bacterial infection. We also investigated indices in terms of their post-flight changes within individuals and their relationship with flight speed among individuals. Compared to un-flown controls, flown birds exhibited significant elevations in numbers of heterophils relative to numbers of lymphocytes and significant reductions in numbers of eosinophils and monocytes. Furthermore, within-individual changes in concentrations of an acute phase protein were greater in flown birds than in controls. However, none of the flight-affected indices showed any evidence of being related to flight speed. While some of the effects of flight were comparable to the effects of the simulated bacterial infection, other effects were observed only after one of these two physiological challenges. Our study suggests that flight by pigeons yields immune-like responses, and these responses have the potential to complicate the conclusions drawn by ecologists regarding immune function in free-living birds. Still, a better understanding of the repercussions of flight can help clarify the ties between the physiology of exercise and the disease ecology of migration and will ultimately assist in the broader goal of accounting for immunological variation within and among species.


Assuntos
Anticorpos Heterófilos/sangue , Columbidae/imunologia , Columbidae/fisiologia , Endotoxinas/imunologia , Voo Animal/fisiologia , Leucócitos/imunologia , Estresse Fisiológico , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/veterinária , Doenças das Aves/imunologia , Eosinófilos/imunologia , Feminino , Imunidade Celular/imunologia , Inflamação/imunologia , Ativação Linfocitária , Linfócitos , Masculino , Monócitos/imunologia , Neutrófilos , Salmonella typhimurium/imunologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-22316629

RESUMO

Ecologists sometimes assume immunological indices reflect fundamental attributes of individuals-an important assumption if an index is to be interpreted in an evolutionary context since among-individual variation drives natural selection. Yet the extent to which individuals vary over different timescales is poorly understood. Haptoglobin, an acute phase protein, is an interesting parameter for studying variability as it is easily quantified and concentrations vary widely due to the molecule's role in inflammation, infection and trauma. We quantified haptoglobin in pigeon plasma samples collected over fourteen months and calculated repeatability to evaluate if haptoglobin concentration is a distinctive trait of individuals. We also explored the capacity of baseline haptoglobin concentrations to predict an array of physiological changes associated with a subsequent experimentally-induced inflammatory response. Maximum repeatability, which occurred over a short mid-winter interval, equaled 0.57. Baseline haptoglobin concentrations predicted response haptoglobin concentrations better than any other endotoxin-induced change. Overall, we identified several strengths and limitations of baseline [Hp] quantification. Acknowledging these qualities should lead to more refined conclusions in studies of the ecology and evolution of immune function.


Assuntos
Proteínas Aviárias/sangue , Haptoglobinas/metabolismo , Inflamação/sangue , Reação de Fase Aguda , Animais , Glicemia , Temperatura Corporal/imunologia , Columbidae , Feminino , Hemaglutinação/imunologia , Imunidade Inata , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Masculino , Consumo de Oxigênio/imunologia , Coelhos , Espécies Reativas de Oxigênio/sangue , Reprodutibilidade dos Testes , Estações do Ano , Fatores Sexuais , Redução de Peso/imunologia
14.
Integr Comp Biol ; 51(4): 563-76, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21690107

RESUMO

The extent to which organisms can protect themselves from disease depends on both the immune defenses they maintain and the pathogens they face. At the same time, immune systems are shaped by the antigens they encounter, both over ecological and evolutionary time. Ecological immunologists often recognize these interactions, yet ecological immunology currently lacks major efforts to characterize the environmental, host-independent, antigenic pressures to which all animals are exposed. Failure to quantify relevant diseases and pathogens in studies of ecological immunology leads to contradictory hypotheses. In contrast, including measures of environmental and host-derived commensals, pathogens, and other immune-relevant organisms will strengthen the field of ecological immunology. In this article, we examine how pathogens and other organisms shape immune defenses and highlight why such information is essential for a better understanding of the causes of variation in immune defenses. We introduce the concept of "operative protection" for understanding the role of immunologically relevant organisms in shaping immune defense profiles, and demonstrate how the evolutionary implications of immune function are best understood in the context of the pressures that diseases and pathogens bring to bear on their hosts. We illustrate common mistakes in characterizing these immune-selective pressures, and provide suggestions for the use of molecular and other methods for measuring immune-relevant organisms.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno , Imunidade , Animais , Aptidão Genética , Interações Hospedeiro-Parasita , Sistema Imunitário , Modelos Biológicos
15.
J Exp Biol ; 213(Pt 20): 3527-35, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20889833

RESUMO

One route to gain insight into the causes and consequences of ecological differentiation is to understand the underlying physiological mechanisms. We explored the relationships between immunological and oxidative status and investigated how birds cope physiologically with the effects of immune-derived oxidative damage. We successively implemented two experimental manipulations to alter physiological status in a model bird species: the homing pigeon (Columba livia). The first manipulation, an immune supplementation, was achieved by oral administration of lysozyme, a naturally occurring and non-specific antimicrobial enzyme. The second manipulation, an immune challenge, took the form of an injection with lipopolysaccharide, a bacterial endotoxin. Between groups of lysozyme-treated and control birds, we compared lipopolysaccharide-induced changes in reactive oxygen metabolites, total antioxidant capacity, haptoglobin, oxygen consumption, body mass and cloacal temperature. Lysozyme supplementation intensified the lipopolysaccharide-induced inflammatory response and generated short-term oxidative and metabolic costs. We identified significant interactions between immune supplementation and immune challenge in terms of reactive oxygen metabolites, haptoglobin and oxygen consumption. Our study provides alternative interpretations of differences in oxidative and immunological indices and demonstrates that these indices can also fluctuate and interact across very short time scales, reflecting something akin to current 'health status' or 'physiological condition'. These ephemeral effects highlight the need to broadly consider current physiological condition when drawing conclusions that relate physiology to ecology and evolution.


Assuntos
Columbidae/imunologia , Columbidae/fisiologia , Suplementos Nutricionais , Fenômenos Ecológicos e Ambientais , Modelos Animais , Estresse Oxidativo/imunologia , Animais , Antioxidantes/metabolismo , Feminino , Inflamação/imunologia , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Masculino , Muramidase/administração & dosagem , Muramidase/imunologia , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...