Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Math Biol ; 84(8): 79, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35771291

RESUMO

We study the relative importance of two key control measures for epidemic spreading: endogenous social self-distancing and exogenous imposed quarantine. We use the framework of adaptive networks, moment-closure, and ordinary differential equations to introduce new model types of susceptible-infected-recovered (SIR) dynamics. First, we compare computationally expensive, adaptive network simulations with their corresponding computationally efficient ODE equivalents and find excellent agreement. Second, we discover that there exists a critical curve in parameter space for the epidemic threshold, which suggests a mutual compensation effect between the two mitigation strategies: as long as social distancing and quarantine measures are both sufficiently strong, large outbreaks are prevented. Third, we study the total number of infected and the maximum peak during large outbreaks using a combination of analytical estimates and numerical simulations. Also for large outbreaks we find a similar compensation mechanism as for the epidemic threshold. This means that if there is little incentive for social distancing in a population, drastic quarantining is required, and vice versa. Both pure scenarios are unrealistic in practice. The new models show that only a combination of measures is likely to succeed to control epidemic spreading. Fourth, we analytically compute an upper bound for the total number of infected on adaptive networks, using integral estimates in combination with a moment-closure approximation on the level of an observable. Our method allows us to elegantly and quickly check and cross-validate various conjectures about the relevance of different network control measures. In this sense it becomes possible to adapt also other models rapidly to new epidemic challenges.


Assuntos
Epidemias , Quarentena , Surtos de Doenças , Epidemias/prevenção & controle , Conceitos Matemáticos , Modelos Biológicos
2.
Phys Rev E ; 101(2-1): 022305, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168556

RESUMO

Collective decision making processes lie at the heart of many social, political, and economic challenges. The classical voter model is a well-established conceptual model to study such processes. In this work, we define a form of adaptive (or coevolutionary) voter model posed on a simplicial complex, i.e., on a certain class of hypernetworks or hypergraphs. We use the persuasion rule along edges of the classical voter model and the recently studied rewiring rule of edges towards like-minded nodes, and introduce a peer-pressure rule applied to three nodes connected via a 2-simplex. This simplicial adaptive voter model is studied via numerical simulation. We show that adding the effect of peer pressure to an adaptive voter model leaves its fragmentation transition, i.e., the transition upon varying the rewiring rate from a single majority state into a fragmented state of two different opinion subgraphs, intact. Yet, above and below the fragmentation transition, we observe that the peer pressure has substantial quantitative effects. It accelerates the transition to a single-opinion state below the transition and also speeds up the system dynamics towards fragmentation above the transition. Furthermore, we quantify that there is a multiscale hierarchy in the model leading to the depletion of 2-simplices, before the depletion of active edges. This leads to the conjecture that many other dynamic network models on simplicial complexes may show a similar behavior with respect to the sequential evolution of simplices of different dimensions.

3.
Sci Rep ; 10(1): 1223, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988357

RESUMO

The collapse of ecosystems, the extinction of species, and the breakdown of economic and financial networks usually hinges on topological properties of the underlying networks, such as the existence of self-sustaining (or autocatalytic) feedback cycles. Such collapses can be understood as a massive change of network topology, usually accompanied by the extinction of a macroscopic fraction of nodes and links. It is often related to the breakdown of the last relevant directed catalytic cycle within a dynamical system. Without detailed structural information it seems impossible to state, whether a network is robust or if it is likely to collapse in the near future. Here we show that it is nevertheless possible to predict collapse for a large class of systems that are governed by a linear (or linearized) dynamics. To compute the corresponding early warning signal, we require only non-structural information about the nodes' states such as species abundances in ecosystems, or company revenues in economic networks. It is shown that the existence of a single directed cycle in the network can be detected by a "quantization effect" of node states, that exists as a direct consequence of a corollary of the Perron-Frobenius theorem. The proposed early warning signal for the collapse of networked systems captures their structural instability without relying on structural information. We illustrate the validity of the approach in a transparent model of co-evolutionary ecosystems and show this quantization in systems of species evolution, epidemiology, and population dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...