Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 55(10): 1843-1855.e6, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108634

RESUMO

To optimize immunity to pathogens, B lymphocytes generate plasma cells with functionally diverse antibody isotypes. By lineage tracing single cells within differentiating B cell clones, we identified the heritability of discrete fate controlling mechanisms to inform a general mathematical model of B cell fate regulation. Founder cells highly influenced clonal plasma-cell fate, whereas class switch recombination (CSR) was variegated within clones. In turn, these CSR patterns resulted from independent all-or-none expression of both activation-induced cytidine deaminase (AID) and IgH germline transcription (GLT), with the latter being randomly re-expressed after each cell division. A stochastic model premised on these molecular transition rules accurately predicted antibody switching outcomes under varied conditions in vitro and during an immune response in vivo. Thus, the generation of functionally diverse antibody types follows rules of autonomous cellular programming that can be adapted and modeled for the rational control of antibody classes for potential therapeutic benefit.


Assuntos
Switching de Imunoglobulina , Recombinação Genética , Linfócitos B , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Switching de Imunoglobulina/genética , Isotipos de Imunoglobulinas/genética , Isotipos de Imunoglobulinas/metabolismo
2.
Front Immunol ; 13: 815193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242131

RESUMO

BACKGROUND: Common Variable Immunodeficiency (CVID) is classified as a 'Predominantly Antibody Deficiency' (PAD), but there is emerging evidence of cellular immunodeficiency in a subset of patients. This evidence includes CVID patients diagnosed with cytomegalovirus (CMV) infection, a hallmark of 'combined immunodeficiency'. CMV infection also has the potential to drive immune dysregulation contributing to significant morbidity and mortality in CVID. We aim to determine the extent of cellular immune dysfunction in CVID patients, and whether this correlates with CMV infection status. METHODS: We conducted a single-center retrospective cohort study of individuals with CVID at the Royal Melbourne Hospital, and identified patients with and without CMV disease or viraemia. We then isolated T-cells from patient and healthy donor blood samples and examined T-cell proliferation and function. RESULTS: Six patients (7.6%, 6/79) had either CMV disease (pneumonitis or gastrointestinal disease), or symptomatic CMV viraemia. A high mortality rate in the cohort of patients with CVID and CMV disease was observed, with 4 deaths in the period of analysis (66.6%, 4/6). Individuals with CMV infection showed reduced T-cell division in response to T-cell receptor (TCR) stimulation when compared with CMV-negative patients. DISCUSSION: This study demonstrates the morbidity and mortality associated with CMV in CVID, and highlights the need for focused interventions for patients with CVID at risk of CMV disease.


Assuntos
Imunodeficiência de Variável Comum , Infecções por Citomegalovirus , Doenças da Imunodeficiência Primária , Citomegalovirus , Humanos , Morbidade , Estudos Retrospectivos , Viremia/complicações
3.
Immunol Cell Biol ; 99(4): 428-435, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33175451

RESUMO

The stress-activated protein kinases (SAPKs)/c-Jun-N-terminal-kinases (JNK) are members of the mitogen-activated protein kinase family. These kinases are responsible for transducing cellular signals through a phosphorylation-dependent signaling cascade. JNK activation in immune cells can lead to a range of critical cellular responses that include proliferation, differentiation and apoptosis. MKK4 is a SAPK that can activate both JNK1 and JNK2; however, its role in T-cell development and function has been controversial. Additionally, loss of either JNK1 or JNK2 has opposing effects in the generation of T-cell immunity to viral infection and cancer. We used mice with a conditional loss of MKK4 in T cells to investigate the in vivo role of MKK4 in T-cell development and function during lymphocytic choriomeningitis virus (LCMV) infection. We found no physiologically relevant differences in T-cell responses or immunity to either acute or chronic LCMV in the absence of MKK4.


Assuntos
Coriomeningite Linfocítica , Proteínas Quinases Ativadas por Mitógeno , Animais , Diferenciação Celular , Ativação Enzimática , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Linfócitos T/metabolismo
4.
Immunol Cell Biol ; 98(6): 439-448, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32133683

RESUMO

The protection of a multicellular organism from infection, at both cell and humoral levels, has been a tremendous driver of gene selection and cellular response strategies. Here we focus on a critical event in the development of humoral immunity: The transition from principally innate responses to a system of adaptive cell selection, with all the attendant mechanical problems that must be solved in order for it to work effectively. Here we review recent advances, but our major goal is to highlight that the development of adaptive immunity resulted from the adoption, reuse and repurposing of an ancient, autonomous cellular program that combines and exploits three titratable cellular fate timers. We illustrate how this common cell machinery recurs and appears throughout biology, and has been essential for the evolution of complex organisms, at many levels of scale.


Assuntos
Imunidade Adaptativa , Evolução Biológica , Imunidade Humoral , Diferenciação Celular , Humanos
5.
J Immunol ; 201(3): 1097-1103, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29914887

RESUMO

The generation of cellular heterogeneity is an essential feature of immune responses. Understanding the heritability and asymmetry of phenotypic changes throughout this process requires determination of clonal-level contributions to fate selection. Evaluating intraclonal and interclonal heterogeneity and the influence of distinct fate determinants in large numbers of cell lineages, however, is usually laborious, requiring familial tracing and fate mapping. In this study, we introduce a novel, accessible, high-throughput method for measuring familial fate changes with accompanying statistical tools for testing hypotheses. The method combines multiplexing of division tracking dyes with detection of phenotypic markers to reveal clonal lineage properties. We illustrate the method by studying in vitro-activated mouse CD8+ T cell cultures, reporting division and phenotypic changes at the level of families. This approach has broad utility as it is flexible and adaptable to many cell types and to modifications of in vitro, and potentially in vivo, fate monitoring systems.


Assuntos
Divisão Celular/fisiologia , Linhagem da Célula/fisiologia , Corantes/metabolismo , Animais , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Proliferação de Células/fisiologia , Rastreamento de Células/métodos , Camundongos , Camundongos Endogâmicos C57BL
6.
Curr Opin Immunol ; 51: 32-38, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29414529

RESUMO

Activation induced proliferation and clonal expansion of antigen specific lymphocytes is a hallmark of the adaptive immune response to pathogens. Recent studies identify two distinct control phases. In the first T and B lymphocytes integrate antigen and additional costimuli to motivate a programmed proliferative burst that ceases with a return to cell quiescence and eventual death. This proliferative burst is autonomously timed, ensuring an appropriate response magnitude whilst preventing uncontrolled expansion. This initial response is subject to further modification and extension by a range of signals that modify, expand and direct the emergence of a rich array of new cell types. Thus, both robust clonal expansion of a small number of antigen specific T cells, and the concurrent emergence of extensive cellular diversity, confers immunity to a vast array of different pathogens. The in vivo response to a given pathogen is made up by the sum of all responding clones and is reproducible and pathogen specific. Thus, a precise description of the regulatory principles governing lymphocyte proliferation, differentiation and survival is essential to a unified understanding of the immune system.


Assuntos
Ativação Linfocitária/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Sobrevivência Celular , Evolução Clonal/genética , Evolução Clonal/imunologia , Seleção Clonal Mediada por Antígeno/genética , Seleção Clonal Mediada por Antígeno/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunidade , Ativação Linfocitária/genética , Linfócitos/citologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...