Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB Bioadv ; 4(5): 342-361, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35520391

RESUMO

Lymphatic drainage generates force that induces prostate cancer cell motility via activation of Yes-associated protein (YAP), but whether this response to fluid force is conserved across cancer types is unclear. Here, we show that shear stress corresponding to fluid flow in the initial lymphatics modifies taxis in breast cancer, whereas some cell lines use rapid amoeboid migration behavior in response to fluid flow, a separate subset decrease movement. Positive responders displayed transcriptional profiles characteristic of an amoeboid cell state, which is typical of cells advancing at the edges of neoplastic tumors. Regulation of the HIPPO tumor suppressor pathway and YAP activity also differed between breast subsets and prostate cancer. Although subcellular localization of YAP to the nucleus positively correlated with overall velocity of locomotion, YAP gain- and loss-of-function demonstrates that YAP inhibits breast cancer motility but is outcompeted by other pro-taxis mediators in the context of flow. Specifically, we show that RhoA dictates response to flow. GTPase activity of RhoA, but not Rac1 or Cdc42 Rho family GTPases, is elevated in cells that positively respond to flow and is unchanged in cells that decelerate under flow. Disruption of RhoA or the RhoA effector, Rho-associated kinase (ROCK), blocked shear stress-induced motility. Collectively, these findings identify biomechanical force as a regulator amoeboid cell migration and demonstrate stratification of breast cancer subsets by flow-sensing mechanotransduction pathways.

3.
Curr Tissue Microenviron Rep ; 2(1): 1-15, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33937868

RESUMO

PURPOSE OF REVIEW: The contribution of biomechanical forces to hematopoietic stem cell (HSC) development in the embryo is a relatively nascent area of research. Herein, we address the biomechanics of the endothelial-to-hematopoietic transition (EHT), impact of force on organelles, and signaling triggered by extrinsic forces within the aorta-gonad-mesonephros (AGM), the primary site of HSC emergence. RECENT FINDINGS: Hemogenic endothelial cells undergo carefully orchestrated morphological adaptations during EHT. Moreover, expansion of the stem cell pool during embryogenesis requires HSC extravasation into the circulatory system and transit to the fetal liver, which is regulated by forces generated by blood flow. Findings from other cell types also suggest that forces external to the cell are sensed by the nucleus and mitochondria. Interactions between these organelles and the actin cytoskeleton dictate processes such as cell polarization, extrusion, division, survival, and differentiation. SUMMARY: Despite challenges of measuring and modeling biophysical cues in the embryonic HSC niche, the past decade has revealed critical roles for mechanotransduction in governing HSC fate decisions. Lessons learned from the study of the embryonic hematopoietic niche promise to provide critical insights that could be leveraged for improvement in HSC generation and expansion ex vivo.

4.
Sci Rep ; 10(1): 22211, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335275

RESUMO

The only available option to treat radiation-induced hematopoietic syndrome is allogeneic hematopoietic cell transplantation, a therapy unavailable to many patients undergoing treatment for malignancy, which would also be infeasible in a radiological disaster. Stromal cells serve as critical components of the hematopoietic stem cell niche and are thought to protect hematopoietic cells under stress. Prior studies that have transplanted mesenchymal stromal cells (MSCs) without co-administration of a hematopoietic graft have shown underwhelming rescue of endogenous hematopoiesis and have delivered the cells within 24 h of radiation exposure. Herein, we examine the efficacy of a human bone marrow-derived MSC therapy delivered at 3 h or 30 h in ameliorating radiation-induced hematopoietic syndrome and show that pancytopenia persists despite MSC therapy. Animals exposed to radiation had poorer survival and experienced loss of leukocytes, platelets, and red blood cells. Importantly, mice that received a therapeutic dose of MSCs were significantly less likely to die but experienced equivalent collapse of the hematopoietic system. The cause of the improved survival was unclear, as complete blood counts, splenic and marrow cellularity, numbers and function of hematopoietic stem and progenitor cells, and frequency of niche cells were not significantly improved by MSC therapy. Moreover, human MSCs were not detected in the bone marrow. MSC therapy reduced crypt dropout in the small intestine and promoted elevated expression of growth factors with established roles in gut development and regeneration, including PDGF-A, IGFBP-3, IGFBP-2, and IGF-1. We conclude that MSC therapy improves survival not through overt hematopoietic rescue but by positive impact on other radiosensitive tissues, such as the intestinal mucosa. Collectively, these data reveal that MSCs could be an effective countermeasure in cancer patients and victims of nuclear accidents but that MSCs alone do not significantly accelerate or contribute to recovery of the blood system.


Assuntos
Hematopoese/efeitos da radiação , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Lesões por Radiação/mortalidade , Lesões por Radiação/terapia , Animais , Biópsia , Medula Óssea/metabolismo , Medula Óssea/patologia , Medula Óssea/efeitos da radiação , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos da radiação , Modelos Animais de Doenças , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos da radiação , Humanos , Imunofenotipagem , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Masculino , Células-Tronco Mesenquimais/citologia , Pancitopenia/etiologia , Pancitopenia/metabolismo , Pancitopenia/patologia , Prognóstico , Lesões por Radiação/patologia , Radioterapia/efeitos adversos , Resultado do Tratamento
5.
Curr Stem Cell Rep ; 6(3): 86-95, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33094091

RESUMO

PURPOSE OF REVIEW: Hematopoietic stem cells (HSCs) are reliant on intrinsic and extrinsic factors for tight control of self-renewal, quiescence, differentiation, and homing. Given the intimate relationship between HSCs and their niche, increasing numbers of studies are examining how biophysical cues in the hematopoietic microenvironment impact HSC functions. RECENT FINDINGS: Numerous mechanosensors are present on hematopoietic cells, including integrins, mechanosensitive ion channels, and primary cilia. Integrin-ligand adhesion, in particular, has been found to be critical for homing and anchoring of HSCs and progenitors in the bone marrow. Integrin-mediated interactions with ligands present on extracellular matrix and endothelial cells are key to establishing long-term engraftment and quiescence of HSCs. Importantly, disruption in the architecture and cellular composition of the bone marrow associated with conditioning regimens and primary myelofibrosis exposes HSCs to a profoundly distinct mechanical environment, with potential implications for progression of hematologic dysfunction and pathologies. SUMMARY: Study of the mechanobiological signals that govern hematopoiesis represents an important future step toward understanding HSC biology in homeostasis, aging, and cancer.

6.
Sci Rep ; 10(1): 10729, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612177

RESUMO

The immune system plays critical roles in promoting tissue repair during recovery from neurotrauma but is also responsible for unchecked inflammation that causes neuronal cell death, systemic stress, and lethal immunodepression. Understanding the immune response to neurotrauma is an urgent priority, yet current models of traumatic brain injury (TBI) inadequately recapitulate the human immune response. Here, we report the first description of a humanized model of TBI and show that TBI places significant stress on the bone marrow. Hematopoietic cells of the marrow are regionally decimated, with evidence pointing to exacerbation of underlying graft-versus-host disease (GVHD) linked to presence of human T cells in the marrow. Despite complexities of the humanized mouse, marrow aplasia caused by TBI could be alleviated by cell therapy with human bone marrow mesenchymal stromal cells (MSCs). We conclude that MSCs could be used to ameliorate syndromes triggered by hypercytokinemia in settings of secondary inflammatory stimulus that upset marrow homeostasis such as TBI. More broadly, this study highlights the importance of understanding how underlying immune disorders including immunodepression, autoimmunity, and GVHD might be intensified by injury.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Doença Enxerto-Hospedeiro/etiologia , Tolerância Imunológica/imunologia , Células-Tronco Mesenquimais/citologia , Linfócitos T/imunologia , Animais , Feminino , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/terapia , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...