Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anal Toxicol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39002106

RESUMO

Xylazine has emerged in recent years as a dangerous adulterant in illicit fentanyl use, and methods for the detection of xylazine in toxicology panels are still lagging. We developed methods for the screening and quantitation of xylazine in oral fluid (OF), a popular testing medium due to its ease of collection and reflection of presence in blood for many classes of drugs. Enzyme-linked immunosorbent assays were employed for the rapid screening of xylazine directly from the collection device buffer with a cutoff of 1 ng/mL. Solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry facilitated the confirmation and quantification of xylazine as low as 0.1 ng/mL and a dynamic range of 0.1-25 ng/mL. Selectivity, ionization suppression, processed sample stability, and dilution effect were also assessed. The method was validated through the American National Standards Institute/American Academy of Forensic Sciences Standards Board (ANSI/ASB) Standard 036, first edition from 2019, and found to be accurate, precise, and robust. Living human subject OF samples collected within substance use disorder and therapeutic drug monitoring clinics received between September 2023 and January 2024, with the specific request to test for xylazine (n = 57), were screened. Presumptive positive samples were confirmed using the validated method. Xylazine confirmed living human subject OF sample concentrations ranged from 1.2 to 23.3 ng/mL.

2.
PLoS Pathog ; 19(3): e1011146, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862759

RESUMO

Ancylostoma caninum is an important zoonotic gastrointestinal nematode of dogs worldwide and a close relative of human hookworms. We recently reported that racing greyhound dogs in the USA are infected with A. caninum that are commonly resistant to multiple anthelmintics. Benzimidazole resistance in A. caninum in greyhounds was associated with a high frequency of the canonical F167Y(TTC>TAC) isotype-1 ß-tubulin mutation. In this work, we show that benzimidazole resistance is remarkably widespread in A. caninum from domestic dogs across the USA. First, we identified and showed the functional significance of a novel benzimidazole isotype-1 ß-tubulin resistance mutation, Q134H(CAA>CAT). Several benzimidazole resistant A. caninum isolates from greyhounds with a low frequency of the F167Y(TTC>TAC) mutation had a high frequency of a Q134H(CAA>CAT) mutation not previously reported from any eukaryotic pathogen in the field. Structural modeling predicted that the Q134 residue is directly involved in benzimidazole drug binding and that the 134H substitution would significantly reduce binding affinity. Introduction of the Q134H substitution into the C. elegans ß-tubulin gene ben-1, by CRISPR-Cas9 editing, conferred similar levels of resistance as a ben-1 null allele. Deep amplicon sequencing on A. caninum eggs from 685 hookworm positive pet dog fecal samples revealed that both mutations were widespread across the USA, with prevalences of 49.7% (overall mean frequency 54.0%) and 31.1% (overall mean frequency 16.4%) for F167Y(TTC>TAC) and Q134H(CAA>CAT), respectively. Canonical codon 198 and 200 benzimidazole resistance mutations were absent. The F167Y(TTC>TAC) mutation had a significantly higher prevalence and frequency in Western USA than in other regions, which we hypothesize is due to differences in refugia. This work has important implications for companion animal parasite control and the potential emergence of drug resistance in human hookworms.


Assuntos
Ancylostoma , Anti-Helmínticos , Animais , Cães , Ancylostoma/genética , Ancylostomatoidea , Anti-Helmínticos/farmacologia , Benzimidazóis/farmacologia , Caenorhabditis elegans , Resistência a Medicamentos/genética , Mutação , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...