Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunohematology ; 37(1): 33-43, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33962490

RESUMO

While a variety of therapeutic options continue to emerge for COVID-19 treatment, convalescent plasma (CP) has been used as a possible treatment option early in the pandemic. One of the most significant challenges with CP therapy, however, both when defining its efficacy and implementing its approach clinically, is accurately and efficiently characterizing an otherwise heterogenous therapeutic treatment. Given current limitations, our goal is to leverage a SARS antibody testing platform with a newly developed automated endpoint titer analysis program to rapidly define SARS-CoV-2 antibody levels in CP donors and hospitalized patients. A newly developed antibody detection platform was used to perform a serial dilution enzyme-linked immunosorbent assay (ELISA) for immunoglobulin (Ig)G, IgM, and IgA SARS-CoV-2 antibodies. Data were then analyzed using commercially available software, GraphPad Prism, or a newly developed program developed in Python called TiterScape, to analyze endpoint titers. Endpoint titer calculations and analysis times were then compared between the two analysis approaches. Serial dilution analysis of SARS-CoV-2 antibody levels revealed a high level of heterogeneity between individuals. Commercial platform analysis required significant time for manual data input and extrapolated endpoint titer values when the last serial dilution was above the endpoint cutoff, occasionally producing erroneously high results. By contrast, TiterScape processed 1008 samples for endpoint titer results in roughly 14 minutes compared with the 8 hours required for the commercial software program analysis. Equally important, results generated by TiterScape and Prism were highly similar, with differences averaging 1.26 ± 0.2 percent (mean ± SD). The pandemic has created unprecedented challenges when seeking to accurately test large numbers of individuals for SARS-CoV-2 antibody levels with a rapid turnaround time. ELISA platforms capable of serial dilution analysis coupled with a highly flexible software interface may provide a useful tool when seeking to define endpoint titers in a high-throughput manner. Immunohematology 2021;37:33-43.While a variety of therapeutic options continue to emerge for COVID-19 treatment, convalescent plasma (CP) has been used as a possible treatment option early in the pandemic. One of the most significant challenges with CP therapy, however, both when defining its efficacy and implementing its approach clinically, is accurately and efficiently characterizing an otherwise heterogenous therapeutic treatment. Given current limitations, our goal is to leverage a SARS antibody testing platform with a newly developed automated endpoint titer analysis program to rapidly define SARS-CoV-2 antibody levels in CP donors and hospitalized patients. A newly developed antibody detection platform was used to perform a serial dilution enzyme-linked immunosorbent assay (ELISA) for immunoglobulin (Ig)G, IgM, and IgA SARS-CoV-2 antibodies. Data were then analyzed using commercially available software, GraphPad Prism, or a newly developed program developed in Python called TiterScape, to analyze endpoint titers. Endpoint titer calculations and analysis times were then compared between the two analysis approaches. Serial dilution analysis of SARS-CoV-2 antibody levels revealed a high level of heterogeneity between individuals. Commercial platform analysis required significant time for manual data input and extrapolated endpoint titer values when the last serial dilution was above the endpoint cutoff, occasionally producing erroneously high results. By contrast, TiterScape processed 1008 samples for endpoint titer results in roughly 14 minutes compared with the 8 hours required for the commercial software program analysis. Equally important, results generated by TiterScape and Prism were highly similar, with differences averaging 1.26 ± 0.2 percent (mean ± SD). The pandemic has created unprecedented challenges when seeking to accurately test large numbers of individuals for SARS-CoV-2 antibody levels with a rapid turnaround time. ELISA platforms capable of serial dilution analysis coupled with a highly flexible software interface may provide a useful tool when seeking to define endpoint titers in a high-throughput manner. Immunohematology 2021;37:33­43.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Anticorpos Antivirais , COVID-19/terapia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunização Passiva , SARS-CoV-2 , Soroterapia para COVID-19
2.
Theor Appl Genet ; 105(2-3): 423-430, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12582547

RESUMO

DNA mismatch repair proteins play an important role in maintaining the integrity of the genetic information during replication and homologous recombination. The MutS-homologous (MSH) and MutL-homologous (MLH) proteins are highly conserved among all prokaryotes and eukaryotes. We have isolated two mutS homologous genes from Zea mays, named Mus1 and Mus2. Phylogenetic analysis identifies Mus1 as a member of the MSH2 protein family. Mus2 is an ortholog of the Arabidopsis thaliana MSH7 protein and belongs to a subgroup of MSH proteins that is possibly plant-specific. Mus1 and Mus2 are expressed at very low levels. Mus1 is located on chromosome 7L near locus b32B, and mus2 maps on chromosome 3S.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...