Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer ; 11(11): 3099-3105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231714

RESUMO

The microenvironment of solid tumors plays an essential role in tumor progression. In lung cancer, the stromal cells produce a fibronectin rich extracellular matrix which is known to contribute to both tumor metastasis and drug resistance. Due to its conformational lability, fibronectin is considerably remodeled by the contractile forces of the fibrotic microenvironment within the tumor stroma. As a result, the secondary structure of fibronectin's Type III domains is disrupted and the molecule becomes highly stretched. The contribution/impact of these strained forms of fibronectin on tumor growth and metastasis is not known. In the current study we show that the partially unfolded first Type III domain of fibronectin, III-1c, activates a toll-receptor/NF-κB pathway leading to an increase in the expression of IL-8. Using a 3-D model of tumor-associated extracellular matrix, we demonstrate that lung cancer cells seeded onto this matrix activate a TLR4/NF-κB signaling pathway leading to a robust increase in the release of IL-8. Cytokine release by these cells is completely dependent on the presence of fibronectin in the extracellular matrix. These findings suggest that paracrine signaling between the tumor and the stromal myofibroblasts causes a remodeling of the matrix fibronectin into a strained conformation which supports the activation of a TLR4/NF-κB signaling pathway resulting in the upregulation of fibro-inflammatory cytokines.

2.
Adv Wound Care (New Rochelle) ; 6(10): 309-319, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29062588

RESUMO

Objective: Dysfunctional remodeling of the extracellular matrix contributes to the formation of TLR-dependent feed forward loops that drive chronic inflammation. We have previously shown that two Type III domains of Fibronectin, FnEDA and FnIII-1c, cooperate to induce the synergistic release of interleukin 8 (IL-8) from dermal fibroblasts. We now identify steps in the TLR4 pathway where synergy can be demonstrated as well as additional kinases functioning in fibronectin activation of TLR4 signaling. We also evaluate the ligand and cell-type specificity of this synergistic response. Approach: FnEDA, FnIII-1c, and lipopolysaccharide (LPS)-induced genes in fibroblasts were analyzed by a quantitative reverse transcription-polymerase chain reaction (qPCR) and protein was measured by an enzyme-linked immunosorbent assay (ELISA). Kinases functioning in gene expression were identified by using specific inhibitors. Activated TLR4-dependent effector molecules were identified by cell fractionation and Western blot and quantified by image analysis. Results: The addition of FnEDA and FnIII-1c to dermal fibroblasts resulted in a synergistic increase in the expression of IL-8, tumor necrosis factor alpha (TNF-α), and vascular cell adhesion molecule (VCAM-1). Synergy between these domains was detected at the level of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) and inhibitor of kappa B kinase (IKK) activation. Induction of IL-8 by fibronectin ligands was partially attenuated in the presence of inhibitors to either epidermal growth factor receptor or Src kinases. FnIII-1c also synergized with LPS to induce IL-8 in dermal fibroblasts, whereas the combined effect of FnEDA and LPS on IL-8 synthesis was additive. In contrast, synergistic responses to these ligands were not observed in THP-1 monocytic cells. Innovation: The data suggest that chronic inflammation may be driven by matrix- and pathogen-derived TLR4 ligands that work in synergy to promote an exuberant innate response. Conclusion: The data suggest that the molecular mechanism underlying synergistic responses to TLR4 ligands lies upstream of IKK activation, likely in the molecular composition of the TLR4 receptor complex that assembles in response to each ligand. In addition, synergistic responses to TLR4 activation may be both cell-type and ligand specific.

3.
BMC Cancer ; 16: 574, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27484721

RESUMO

BACKGROUND: Fibronectin is a mechanically sensitive protein which is organized in the extracellular matrix as a network of interacting fibrils. The lung tumor stroma is enriched for fibronectin which is thought to contribute to metastasis and drug resistance. Fibronectin is an elastic, multi-modular protein made up of individually folded domains, some of which can stretch in response to increased mechanical tension. Very little is known about the relationship of fibronectin's unfolded domains to lung cancer resistance to chemotherapy. In the present study, we evaluated the impact of unfolding the first Type III domain of fibronectin (FnIII-1c) on TNF-related apoptosis inducing ligand (TRAIL) resistance. METHODS: NCI-H460 non-small cell lung cancer cells were treated with FnIII-1c then assessed for TRAIL-induced apoptosis. Subsequent analysis of FnIII-1c-mediated signaling pathways was also completed. Human non-small cell lung cancer tissue sections were assessed for the expression of vitronectin by immunohistochemistry. RESULTS: FnIII-1c inhibited TRAIL-induced activation of caspase 8 and subsequent apoptosis in NCI-H460 lung cancer cells. FnIII-1c treatment was associated with the activation of the phosphatidylinositol-3-kinase/alpha serine/threonine kinase (PI3K/Akt) pathway and the αvß5 integrin receptor for vitronectin, both of which were required for TRAIL resistance. Immunohistochemical staining of sections from non-small cell lung cancers showed that vitronectin was localized around blood vessels and in the tumor-stroma interface. CONCLUSIONS: Unfolding of Type III domains within the fibronectin matrix may promote TRAIL resistance through the activation of a PI3K/Akt/αvß5 signaling axis and point to a novel mechanism by which changes in secondary structure of fibronectin contribute to cancer cell resistance to apoptosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fibronectinas/farmacologia , Neoplasias Pulmonares/metabolismo , Receptores de Vitronectina/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Caspase 8/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Domínio de Fibronectina Tipo III , Fibronectinas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Vitronectina/metabolismo
4.
PLoS One ; 9(7): e102974, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25051083

RESUMO

Fibronectin is a critical component of the extracellular matrix and alterations to its structure will influence cellular behavior. Matrix fibronectin is subjected to both mechanical and biochemical regulation. The Type III domains of fibronectin can be unfolded in response to increased cellular contractility, included or excluded from the molecule by alternative splicing mechanisms, or released from the matrix by proteolysis. Using Inflammatory Cytokine microarrays we found that the alternatively spliced fibronectin Type III domain, FnEDA, and the partially unfolded III-1 domain, FnIII-1c, induced the expression of a multitude of pro-inflammatory cytokines in human dermal fibroblasts, most notably CXCL1-3, IL-8 and TNF-α. FnIII-1c, a peptide representing an unfolded intermediate structure of the first Type III domain has been shown to initiate the toll-like receptor-4 (TLR4)-NFκB-dependent release of cytokines from human dermal fibroblasts (You, et al., J. Biol. Chem., 2010). Here we demonstrate that FnIII-1c and the alternatively spliced FnEDA domain induce a TLR4 dependent activation of p38 MAP kinase and its downstream effector, MAPKAP Kinase-2 (MK-2), to regulate cytokine expression in fibroblasts. RT-qPCR analysis indicated that the p38-MK-2 pathway regulates IL-8 mRNA stability. Interestingly, addition of FnIII-1c and FnEDA synergistically enhanced TLR4-dependent IL-8 release. These data indicate that Fn contains two Type III domains which can activate TLR signaling to induce an inflammatory response in fibroblasts. Furthermore, our data identifies the NF-κB and p38/MK2 signaling pathways as transducers of signals initiated in response to structural changes in fibronectin.


Assuntos
Citocinas/genética , Fibronectinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Processamento Alternativo , Sítios de Ligação/genética , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Derme/citologia , Sinergismo Farmacológico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibronectinas/química , Fibronectinas/genética , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/genética , Immunoblotting , Mediadores da Inflamação/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
J Cancer ; 2: 478-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980322

RESUMO

Recent studies have pointed to changes in tissue mechanics as a contributory element to the development of malignancies. Increased tissue rigidity is associated with the unfolding of the Type III domains of fibronectin within the extracellular matrix. The consequences of this unfolding on cellular functions within the lung are not well understood. In the present study, we evaluated the effect of a peptide representing a partially unfolded intermediate of the first Type III repeat of fibronectin (FnIII-1c) on inflammatory gene expression in adult human lung fibroblast cells. FnIII-1c induced expression of cytokines, CXCL1-3, IL-8 and TNF-α, by lung fibroblast cells. The increase in IL-8 expression was dependent on Toll-like receptor 2 and NFκB. Immunohistochemistry of tissue arrays representing squamous cell carcinoma of the lung revealed extensive stromal staining for IL-8 and fibronectin fibrils which were co-aligned with myofibroblasts. These data suggest a model in which unfolding of FnIII domains secondary to myofibroblast-generated tension may induce the release of cytokines by stromal fibroblasts present within the lung tumor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...