Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 31(7): 1158-1168, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36006497

RESUMO

This study investigated the changes in the sinking rates and physiochemical characteristics of the planktonic marine diatom, Thalassiosira pseudonana, caused by 72 h exposure to antifouling agent tributyltin (TBT) at 1.0 µg L-1 (72-h 10% effective concentration for growth rate, EC10), and 1.7 µg L-1 (EC50). After 72 h of exposure, the sinking rates of T. pseudonana cells were changed from 0.13-0.08 m day-1 in the control, 0.08-0.05 m day-1 in the EC10 treatment, and 0.04-0.006 m day-1 in the EC50 treatment. The results revealed that the sinking rate of T. pseudonana decreased significantly compared with the control at 48 h in the EC10 treatment group and at 24, 48, and 72 h in the EC50 treatment group. The photosynthetic performance index on an absorption basis and the maximum quantum yields of photosystem II also decreased significantly (P < 0.05) in the TBT treatments compared with the control. There was a significant (P < 0.05) positive correlation between sinking rates and cellular protein contents (ng cell-1). Changes in the biochemical and physiochemical composition of the cells suggest that interference with photosynthetic processes by TBT may have reduced their specific gravity and thereby caused a decrease in the sinking rates of T. pseudonana. The results of this investigation suggest the importance of considering the effects of pollutants on the sinking behaviors of diatoms when evaluating the adverse effects of pollutants on marine primary production.


Assuntos
Incrustação Biológica , Diatomáceas , Poluentes Ambientais , Incrustação Biológica/prevenção & controle , Poluentes Ambientais/metabolismo , Fotossíntese , Plâncton , Compostos de Trialquitina
2.
Vet World ; 14(1): 210-221, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33642806

RESUMO

Antimicrobial is an indispensable part of veterinary medicine used for the treatment and control of diseases as well as a growth promoter in livestock production. Frequent use of antimicrobials in veterinary practices may lead to the residue in animal originated products and creates some potential problems for human health. The presence of antimicrobial residues in animal originated foods may induce serious health problems such as allergic reaction, antimicrobial resistance (AMR), and lead to carcinogenic and mutagenic effects in the human body. The misuse or abuse of antibiotics in human medicine is thought to be a principal cause of AMR but some antimicrobial-resistant bacteria and their resistant genes originating from animals are also responsible for developing AMR. However, the residual effect of antimicrobials in feed and food products of animal origin is undeniable. In developing countries, the community is unaware of this residual effect due to lack of proper information about antibiotic usage, AMR surveillance, and residue monitoring system. It is imperative to reveal the current situation of antimicrobial use in livestock production and its impacts on public health. Moreover, the safety levels of animal feeds and food products of animal origin must be strictly monitored and public awareness should be developed against the indiscriminate use of antimicrobial in animal production. Therefore, the current review summarizes the literature on antimicrobial use in livestock production and its hazardous residual impacts on the human body in developing countries.

3.
Vet World ; 14(12): 3084-3090, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35153396

RESUMO

BACKGROUND AND AIM: Determination of trace amounts of vitamins in multi-component feed premix is a troublesome analytical procedure. In this study, a simple and rapid high-performance liquid chromatography (HPLC) method was developed and validated for the concurrent detection and quantitation of four water-soluble vitamins such as thiamine, riboflavin, pyridoxine, and cyanocobalamin in veterinary feed premixes. MATERIALS AND METHODS: The chromatographic separation of the vitamins was carried out at 35°C temperature on a reversed-phase C18 column using a gradient pump mode. Mobile phase constituents were solvent (a): 25 mM Potassium dihydrogen phosphate and 5 mM sodium hexanesulfonate in deionized water having pH-4.0 and solvent and (b) 5 mM sodium hexanesulfonate in methanol. Detection was performed with HPLC ultraviolet/visible detection set at 278 and 361 nm wavelength in two different channels. The flow rate was 1.2 mL/min and the total run time was 25 min. RESULTS: The method was validated according to the International Conference on Harmonization and Food and Drug Administration guidelines and acceptance criteria for system suitability, precision, linearity, and recovery were met in all cases. The relative standard deviation for system suitability and precision was <2% for all vitamins. The linearity of the calibration curves was excellent (R2>0.999) at concentration of 5, 10, 15, 20, 25, and 30 µg/mL for all vitamins. The limits of detection values were 0.0125, 0.0017, 0.0064, and 0.0065 µg/mL for thiamine, riboflavin, pyridoxine, and cyanocobalamin, respectively, and the limits of quantification values were 0.0378, 0.0051, 0.0213, and 0.0198 µg/mL for thiamine, riboflavin, pyridoxine, and cyanocobalamin, respectively. The recovery percentages ranged from 88% to 115%. CONCLUSION: The overall parameters of the proposed method met the validation criteria and this method could be a highly desirable technique for routine analysis of water-soluble vitamins in veterinary feed premix.

4.
Sci Rep ; 10(1): 16489, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020535

RESUMO

Redox status influences the course of the inflammatory, metabolic, and proliferative liver diseases. Oxidative stress is thought to play a crucial and sustained role in the pathological progression of early steatosis to severe hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Oxidative stress induced by reactive oxygen species which are generated in the mitochondria can lead to chronic organelle damage in hepatocytes. Currently, the diagnosis of liver disease requires liver biopsy, which is invasive and associated with complications. The present report describes the development of a novel molecular probe, EDA-PROXYL, with higher reactivity and mitochondrial selectivity than standard carboxyl-PROXYL and carbamoyl-PROXYL probes. The membrane permeability of our probe improved in aqueous environments which led to increased accumulation in the liver and interaction of EDA-PROXYL with the carnitine transporter via the amine (NH3+) group further increased accumulation. This increased mitochondrial sensitivity and enhanced accumulation highlight the potential of EDA-PROXYL as a molecular probe for determining metabolic reactions of the mitochondria. Thus, this novel probe could be a tool for the evaluation of redox status of the mitochondria to assess the degree of liver injury and, ultimately, the response to pharmacological therapy.


Assuntos
Fígado/metabolismo , Mitocôndrias/metabolismo , Sondas Moleculares/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
5.
Chemosphere ; 175: 200-209, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28222374

RESUMO

The present research investigated the effect of diuron on sinking rate and the physiochemical changes in two marine diatoms, Thalassiosira pseudonana (single-celled species) and Skeletonema marinoi-dohrnii complex (chain-forming species). The results revealed that the sinking rate of both diatoms exposed to diuron at a level of 50% effective concentration for growth (EC50) decreased significantly compared with the control. Photosynthetic performance (Fv/Fm and PIABS) of both diatoms also decreased significantly with diuron exposure. The number of cells per chain in S. marinoi-dohrnii decreased significantly with diuron treatment, but T. pseudonana cell diameter remained stable. Neutral lipid concentration per cell was significantly higher compared with control at 72 h in both diatom species exposed to EC50 level diuron. And water-soluble protein concentration per cell at 72 h was lower than control in the T. pseudonana EC50 group only. These biochemical changes may decrease specific gravity of cells and seems to cause a decreased sinking rate in diatoms. The positive significant correlation between the numbers of cells per chain and sinking rate in S. marinoi-dohrnii indicated that chain length is also an important factor in sinking rate regulation for chain-forming diatoms. Thus, our present study suggested that suppression of photosynthetic performance and the resultant physiochemical changes induced the decreased sinking rate that may inhibit the normal survival strategy (avoidance from the surface layer where strong light either causes photo-inhibition or interrupts resting cell formation). Therefore, the use of antifouling agents should be considered for the sustainable marine environment.


Assuntos
Diatomáceas/efeitos dos fármacos , Diurona/toxicidade , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Diatomáceas/fisiologia , Fotossíntese/efeitos dos fármacos
6.
Medchemcomm ; 8(7): 1514-1520, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108863

RESUMO

Inflammatory activation of macrophages is a key factor in chronic inflammatory diseases such as ulcerative colitis. The excessive production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) by macrophages causes oxidative stress during the inflammatory response and exaggerates inflammatory lesions in ulcerative colitis. Inhibition of the inflammatory activation of macrophages is a promising treatment for chronic inflammatory diseases. Here, we prepared self-filling polymer-lipid hybrid nanoparticles (PST-PLNPs) consisting of poly dl-lactic acid as a hydrophobic biodegradable polymer core encapsulating α-tocopherol (T) and phosphatidylserine (PS) both on the surface and interior of the particle. We confirmed the anti-inflammatory response of these hybrid nanoparticles in activated murine macrophages. PS has anti-inflammatory effects on macrophages by modulating the macrophage phenotype, while α-tocopherol is an antioxidant that neutralizes ROS. We found that PS-containing (PS-PLNPs) and PS plus α-tocopherol-containing (PST-PLNPs) polymer-lipid hybrid nanoparticles significantly increased the viability of lipopolysaccharide (LPS)-treated macrophages compared with phosphatidylcholine-containing PLNPs. PST-PLNPs had a better effect than PS-PLNPs, which was attributed to the synergy between PS and α-tocopherol. This synergic action of PST-PLNPs reduced NO and pro-inflammatory cytokine (IL-6) production and increased anti-inflammatory cytokine (TGF-ß1) production when incubated with activated macrophages. Thus, these self-filling biodegradable polymer-lipid hybrid nanoparticles (PST-PLNPs) containing anti-oxidant and anti-inflammatory molecules might be potential alternative drug carriers to liposomes and polymeric nanoparticles for the treatment of chronic inflammatory diseases such as ulcerative colitis.

7.
J Biomater Sci Polym Ed ; 27(3): 290-302, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26689775

RESUMO

Neuroinflammation caused by microglial activation is a key contributing factor in neurological disorders such as those involving ischaemia. Excess production of reactive oxygen species (ROS) and nitric oxide (NO) stimulates the inflammatory response during ischaemia, significantly damaging cells. Inhibition of inflammatory activation of microglia is a promising potential treatment approach for neurological diseases. In this study, we introduce α-tocopherol and phosphatidylserine (PS) containing liposomes (PST-liposomes) to inhibit the microglial inflammatory response. PS is known to have anti-inflammatory effects on microglia by modulating the microglial phenotype, while α-tocopherol is an antioxidant, known to neutralize ROS. We found that both PS-containing liposomes (PS-liposomes) and PST-liposomes, as compared with phosphatidylcholine containing liposomes, significantly increased viability of hypoxia-treated microglia. The PST-liposomes functioned better than the PS-liposomes and we attribute this superior effect to a synergy between PS and α-tocopherol. This synergic action of PST-liposomes was illustrated in their ability, when incubated with microglia, to reduce NO and pro-inflammatory cytokine (TNF-α) production and increase anti-inflammatory cytokine (TGF-ß1) production. Thus, the improved viability of hypoxia-treated microglia when treated with PST-liposomes involved anti-inflammatory effects, including ROS neutralization, as well as induction of a microglial phenotypic change. Our results suggest that PST-liposomes represent a potential therapeutic approach to reducing ischaemic injury in the brain.


Assuntos
Microglia/imunologia , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Encéfalo , Bovinos , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Proteínas do Ovo/química , Escherichia coli , Lipopolissacarídeos/toxicidade , Lipossomos , Camundongos , Microglia/efeitos dos fármacos , Fosfatidilserinas/administração & dosagem , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , alfa-Tocoferol/administração & dosagem
8.
J Biomater Sci Polym Ed ; 26(18): 1465-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26414796

RESUMO

Controlling inflammatory response is important to avoid chronic inflammation in many diseases including atopic dermatitis (AD). In this research, we tried using a phosphatidylserine (PS)-coated microparticles in the AD mouse model for achieving the modulation of the macrophage phenotype to an anti-inflammatory state. Here, we prepared poly (D,L-lactic acid) microparticle coated with PS on the outside shell. We confirmed the cellular uptake of the PS-coated microparticle, which leads to the significant downregulation of the inflammatory cytokine production. In the mouse model of AD, the PS-coated microparticle was injected subcutaneously for a period of 12 days. The mice showed significant reduction in the development of AD symptoms comparing with the mice treated with the PC-coated microparticle.


Assuntos
Anti-Inflamatórios/administração & dosagem , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Fármacos Dermatológicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fosfatidilserinas/administração & dosagem , Animais , Bovinos , Células Cultivadas , Dermatite Atópica/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Proteínas do Ovo/química , Feminino , Injeções Subcutâneas , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...