Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Regen Med ; 8(1): 45, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626067

RESUMO

Cell-based therapeutics are promising interventions to repair ischemic cardiac tissue. However, no single cell type has yet been found to be both specialized and versatile enough to heal the heart. The synergistic effects of two regenerative cell types including endothelial colony forming cells (ECFC) and first-trimester human umbilical cord perivascular cells (FTM HUCPVC) with endothelial cell and pericyte properties respectively, on angiogenic and regenerative properties were tested in a rat model of myocardial infarction (MI), in vitro tube formation and Matrigel plug assay. The combination of FTM HUCPVCs and ECFCs synergistically reduced fibrosis and cardiomyocyte apoptosis, while promoting favorable cardiac remodeling and contractility. These effects were in part mediated by ANGPT2, PDGF-ß, and VEGF-C. PDGF-ß signaling-dependent synergistic effects on angiogenesis were also observed in vitro and in vivo. FTM HUCPVCs and ECFCs represent a cell combination therapy for promoting and sustaining vascularization following ischemic cardiac injury.

2.
Biol Open ; 8(7)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345790

RESUMO

High quality cell cultures require reliable laboratory practices. Today's small-scale in vitro cell culture format is dominated by circular topology vessels, with the inherent disadvantage of secondary flow induced each time the cell cultures are repositioned. The secondary flow generates uneven sedimentation and adherence that negatively impacts cell culture quality. Here we show a modification of the circular culture vessel that abrogates these disturbances. Cell culture wells were augmented with a central column to diminish secondary flow. Human carcinoma cell lines (BeWo, JEG-3), mesenchymal stem cells [human umbilical cord perivascular cells (HUCPVC)] and mouse embryonic fibroblasts (MEF) were cultured in both column-augmented and regular culture wells. Human carcinoma cell cultures showed even cell densities and significantly more viable cells in column-augmented vessels. In FTM HUCPVC cultures, cell surface MSC marker (CD90, CD105) expression and cell differentiation-related gene expression patterns were significantly more homogeneous in column-augmented vessels. MEF cells in column-augmented culture vessels showed a more consistent expression of IGF-1. Column-augmented cell culture vessels significantly improve the homogeneity of adherent cell cultures by mitigating the adverse effect of the secondary flow.This article has an associated First Person interview with the first author of the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...