Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Eur Heart J Case Rep ; 7(7): ytad306, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37497266

RESUMO

Background: In patients with stiff left atrial (LA) syndrome, reservoir function is significantly impaired due to extensive LA fibrosis; consequently, the increase in LA pressure during haemodynamic stress is prominent, easily leading to pulmonary venous hypertension and subsequent pulmonary congestion, and eventually results in intractable heart failure. Case summary: A 79-year-old female with mitral stenosis and atrial fibrillation underwent valve replacement, Cox-Maze IV procedure, LA plication, and appendage ligation 4 years prior to presentation. Thereafter, she underwent a total of two catheter ablation procedures for recurrent atrial tachycardia. Transthoracic echocardiography revealed two continuous colour jets across the interatrial septum, with a peak pressure gradient of 23 mmHg, which was consistent with the residual puncture hole at the catheter ablation procedures. Although transoesophageal echocardiography showed no evidence of prosthetic valve dysfunction, the pulmonary venous flow signal showed a significantly blunted systolic forward flow, extremely small retrograde reversal flow during atrial contraction, and prominent diastolic flow velocities, all of which indicated significantly impaired LA function. Cardiac catheter examination revealed a characteristic pulmonary capillary wedge pressure waveform, which consisted of a steep ascending limb of v wave with a large peak, consistent with stiff LA syndrome. Discussion: Treatment of patients with stiff LA syndrome is quite challenging and restricted to the use of diuretics only, which has limited efficacy and eventually results in intractable heart failure. In this case, owing to the inter-atrial pressure-relieving gateway, the patient was only mildly symptomatic despite the existence of a non-compliant LA.

3.
J Struct Biol ; 214(1): 107806, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34742833

RESUMO

Mitochondrial morphological defects are a common feature of diseased cardiac myocytes. However, quantitative assessment of mitochondrial morphology is limited by the time-consuming manual segmentation of electron micrograph (EM) images. To advance understanding of the relation between morphological defects and dysfunction, an efficient morphological reconstruction method is desired to enable isolation and reconstruction of mitochondria from EM images. We propose a new method for isolating and reconstructing single mitochondria from serial block-face scanning EM (SBEM) images. CDeep3M, a cloud-based deep learning network for EM images, was used to segment mitochondrial interior volumes and boundaries. Post-processing was performed using both the predicted interior volume and exterior boundary to isolate and reconstruct individual mitochondria. Series of SBEM images from two separate cardiac myocytes were processed. The highest F1-score was 95% using 50 training datasets, greater than that for previously reported automated methods and comparable to manual segmentations. Accuracy of separation of individual mitochondria was 80% on a pixel basis. A total of 2315 mitochondria in the two series of SBEM images were evaluated with a mean volume of 0.78 µm3. The volume distribution was very broad and skewed; the most frequent mitochondria were 0.04-0.06 µm3, but mitochondria larger than 2.0 µm3 accounted for more than 10% of the total number. The average short-axis length was 0.47 µm. Primarily longitudinal mitochondria (0-30 degrees) were dominant (54%). This new automated segmentation and separation method can help quantitate mitochondrial morphology and improve understanding of myocyte structure-function relationships.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Mitocôndrias , Miócitos Cardíacos
4.
BMC Infect Dis ; 21(1): 19, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407229

RESUMO

BACKGROUND: Exotoxins secreted from Staphylococcus aureus or Streptococcus pyogenes act as superantigens that induce systemic release of inflammatory cytokines and are a common cause of toxic shock syndrome (TSS). However, little is known about TSS caused by coagulase-negative staphylococci (CoNS) and the underlying mechanisms. Here, we present a rare case of TSS caused by Staphylococcus simulans (S. simulans). CASE PRESENTATION: We report the case of a 75-year-old woman who developed pneumococcal pneumonia and bacteremia from S. simulans following an influenza infection. The patient met the clinical criteria for probable TSS, and her symptoms included fever of 39.5 °C, diffuse macular erythroderma, conjunctival congestion, vomiting, diarrhea, liver dysfunction, and disorientation. Therefore, the following treatment was initiated for bacterial pneumonia complicating influenza A with suspected TSS: meropenem (1 g every 8 h), vancomycin (1 g every 12 h), and clindamycin (600 mg every 8 h). Blood cultures taken on the day after admission were positive for CoNS, whereas sputum and pharyngeal cultures grew Streptococcus pneumoniae (Geckler group 4) and methicillin-sensitive S. aureus, respectively. However, exotoxins thought to cause TSS, such as TSS toxin-1 and various enterotoxins, were not detected. The patient's therapy was switched to cefazolin (2 g every 8 h) and clindamycin (600 mg every 8 h) for 14 days based on microbiologic test results. She developed desquamation of the fingers on hospital day 8 and was diagnosed with TSS. Conventional exotoxins, such as TSST-1, and S. aureus enterotoxins were not detected in culture samples. The serum levels of inflammatory cytokines, such as neopterin and IL-6, were high. CD8+ T cells were activated in peripheral blood. Vß2+ population activation, which is characteristic for TSST-1, was not observed in the Vß usage of CD8+ T cells in T cell receptor Vß repertoire distribution analysis. CONCLUSIONS: We present a case of S. simulans-induced TSS. Taken together, we speculate that no specific exotoxins are involved in the induction of TSS in this patient. A likely mechanism is uncontrolled cytokine release (i.e., cytokine storm) induced by non-specific immune reactions against CoNS proliferation.


Assuntos
Síndrome da Liberação de Citocina/complicações , Choque Séptico/complicações , Infecções Estafilocócicas/complicações , Staphylococcus aureus/isolamento & purificação , Staphylococcus/isolamento & purificação , Streptococcus pneumoniae/isolamento & purificação , Idoso , Antibacterianos/administração & dosagem , Hemocultura , Cefazolina/administração & dosagem , Clindamicina/administração & dosagem , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas/sangue , Feminino , Humanos , Testes de Sensibilidade Microbiana , Choque Séptico/tratamento farmacológico , Escarro/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Resultado do Tratamento
5.
World J Clin Cases ; 8(20): 4853-4857, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33195653

RESUMO

BACKGROUND: High-flow nasal cannula (HFNC) therapy and morphine continuous subcutaneous infusion (CSI) have been used to ameliorate dyspnea in non-cancer patients with end-stage respiratory diseases, including chronic obstructive pulmonary disease and interstitial pneumonia, primarily in hospital settings. However, it is rare to perform home-based medical treatment using these. We observe a case to assess the feasibility of this treatment strategy. CASE SUMMARY: Here, we report a case of a 75-year-old man who was diagnosed with interstitial pneumonia 11 years ago and was successfully nursed at home during his terminal phase for over 10 mo without hospitalization, by introducing domiciliary uses of HFNC and morphine CSI with a patient-controlled analgesia device. CONCLUSION: Active utilization of HFNC and morphine CSI with patient-controlled analgesia device would substantiate successful end-of-life palliative home care of idiopathic interstitial pneumonia patients.

6.
Rheumatol Int ; 40(1): 145-152, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31541282

RESUMO

Adult-onset Still's disease (AOSD) is a relatively rare systemic inflammatory disorder and is diagnosed using various sets of classification criteria, with the Yamaguchi criteria as the most widely used criteria. Herein, we present the case of a 21-year-old woman admitted with a high fever, lasting for over 1 month, who did not fulfill the Yamaguchi criteria. However, by analyzing the inflammatory cytokine profile, we defined this case as AOSD based on a greatly elevated serum interleukin-18 level. In addition, we predicted the occurrence of macrophage activation syndrome by a characteristic increase in the soluble tumor necrosis factor receptor II level, which allowed a timely intervention for this malicious complication. Therefore, we suggest that cytokine profiling will be useful for the diagnosis and management of AOSD.


Assuntos
Interleucina-18/imunologia , Síndrome de Ativação Macrofágica/diagnóstico , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Doença de Still de Início Tardio/diagnóstico , Citocinas/imunologia , Feminino , Glucocorticoides/uso terapêutico , Humanos , Interleucina-6/imunologia , Síndrome de Ativação Macrofágica/tratamento farmacológico , Síndrome de Ativação Macrofágica/imunologia , Metilprednisolona/uso terapêutico , Neopterina/imunologia , Prednisolona/uso terapêutico , Pulsoterapia , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Doença de Still de Início Tardio/tratamento farmacológico , Doença de Still de Início Tardio/imunologia , Adulto Jovem
7.
Cardiovasc Res ; 115(1): 179-189, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850765

RESUMO

Aims: Myocardial ischaemia followed by reperfusion (IR) causes an oxidative burst resulting in cellular dysfunction. Little is known about the impact of oxidative stress on cardiomyocyte lipids and their role in cardiac cell death. Our goal was to identify oxidized phosphatidylcholine-containing phospholipids (OxPL) generated during IR, and to determine their impact on cell viability and myocardial infarct size. Methods and results: OxPL were quantitated in isolated rat cardiomyocytes using mass spectrophotometry following 24 h of IR. Cardiomyocyte cell death was quantitated following exogenously added OxPL and in the absence or presence of E06, a 'natural' murine monoclonal antibody that binds to the PC headgroup of OxPL. The impact of OxPL on mitochondria in cardiomyocytes was also determined using cell fractionation and Bnip expression. Transgenic Ldlr-/- mice, overexpressing a single-chain variable fragment of E06 (Ldlr-/--E06-scFv-Tg) were used to assess the effect of inactivating endogenously generated OxPL in vivo on myocardial infarct size. Following IR in vitro, isolated rat cardiomyocytes showed a significant increase in the specific OxPLs PONPC, POVPC, PAzPC, and PGPC (P < 0.05 to P < 0.001 for all). Exogenously added OxPLs resulted in significant death of rat cardiomyocytes, an effect inhibited by E06 (percent cell death with added POVPC was 22.6 ± 4.14% and with PONPC was 25.3 ± 3.4% compared to 8.0 ± 1.6% and 6.4 ± 1.0%, respectively, with the addition of E06, P < 0.05 for both). IR increased mitochondrial content of OxPL in rat cardiomyocytes and also increased expression of Bcl-2 death protein 3 (Bnip3), which was inhibited in presence of E06. Notably cardiomyocytes with Bnip3 knock-down were protected against cytotoxic effects of OxPL. In mice exposed to myocardial IR in vivo, compared to Ldlr-/- mice, Ldlr-/--E06-scFv-Tg mice had significantly smaller myocardial infarct size normalized to area at risk (72.4 ± 21.9% vs. 47.7 ± 17.6%, P = 0.023). Conclusions: OxPL are generated within cardiomyocytes during IR and have detrimental effects on cardiomyocyte viability. Inactivation of OxPL in vivo results in a reduction of infarct size.


Assuntos
Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos/metabolismo , Anticorpos de Cadeia Única/metabolismo , Animais , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Oxirredução , Ratos Sprague-Dawley , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais , Anticorpos de Cadeia Única/genética
8.
Biochem Biophys Res Commun ; 505(4): 1251-1256, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30333092

RESUMO

Many studies have shown the feasibility of in vivo cardiac transplantation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) in animal experiments. However, nano-structural confirmation of the successful incorporation of the engrafted iPSC-CMs including electron microscopy (EM) has not been accomplished, partly because identification of graft cells in EM has proven to be difficult. Using APEX2, an engineered ascorbate peroxidase imaging tag, we successfully localized and analyzed the fine structure of sarcomeres and the excitation contraction machinery of iPSC-CMs 6 months after their engraftment in infarcted mouse hearts. APEX2 made iPSC-CMs visible in multiple imaging modalities including light microscopy, X-ray microscopic tomography, transmission EM, and scanning EM. EM tomography allowed assessment of the differentiation state of APEX2-positive iPSC-CMs and analysis of the fine structure of the sarcomeres including T-tubules and dyads.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Miocárdio/citologia , Miócitos Cardíacos/transplante , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Coração/anatomia & histologia , Humanos , Masculino , Camundongos , Sondas Moleculares , Infarto do Miocárdio/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/citologia
9.
Biochem J ; 475(1): 169-183, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29170159

RESUMO

Reduced protein expression of the cardiac ryanodine receptor type 2 (RyR2) is thought to affect the susceptibility to stress-induced ventricular tachyarrhythmia (VT) and cardiac alternans, but direct evidence for the role of RyR2 protein expression in VT and cardiac alternans is lacking. Here, we used a mouse model (crrm1) that expresses a reduced level of the RyR2 protein to determine the impact of reduced RyR2 protein expression on the susceptibility to VT, cardiac alternans, cardiac hypertrophy, and sudden death. Electrocardiographic analysis revealed that after the injection of relatively high doses of caffeine and epinephrine (agents commonly used for stress test), wild-type (WT) mice displayed long-lasting VTs, whereas the crrm1 mutant mice exhibited no VTs at all, indicating that the crrm1 mutant mice are resistant to stress-induced VTs. Intact heart Ca2+ imaging and action potential (AP) recordings showed that the crrm1 mutant mice are more susceptible to fast-pacing induced Ca2+ alternans and AP duration alternans compared with WT mice. The crrm1 mutant mice also showed an increased heart-to-body-weight ratio and incidence of sudden death at young ages. Furthermore, the crrm1 mutant hearts displayed altered Ca2+ transients with increased time-to-peak and decay time (T50), increased ventricular wall thickness and ventricular cell area compared with WT hearts. These results indicate that reduced RyR2 protein expression suppresses stress-induced VTs, but enhances the susceptibility to cardiac alternans, hypertrophy, and sudden death.


Assuntos
Cálcio/metabolismo , Cardiomegalia/genética , Ventrículos do Coração/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Potenciais de Ação/efeitos dos fármacos , Animais , Cafeína/farmacologia , Sinalização do Cálcio , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Morte Súbita Cardíaca/patologia , Modelos Animais de Doenças , Epinefrina/farmacologia , Expressão Gênica , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Camundongos , Camundongos Transgênicos , Contração Muscular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Técnicas de Cultura de Órgãos , Periodicidade , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Estresse Fisiológico/efeitos dos fármacos , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia
10.
Sci Rep ; 6: 19111, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743035

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (CMs) are a promising tool for cardiac cell therapy. Although transplantation of induced pluripotent stem cell (iPSC)-derived CMs have been reported in several animal models, the treatment effect was limited, probably due to poor optimization of the injected cells. To optimize graft cells for cardiac reconstruction, we compared the engraftment efficiency of intramyocardially-injected undifferentiated-iPSCs, day 4 mesodermal cells, and day 8, day 20, and day 30 purified iPSC-CMs after initial differentiation by tracing the engraftment ratio (ER) using in vivo bioluminescence imaging. This analysis revealed the ER of day 20 CMs was significantly higher compared to other cells. Transplantation of day 20 CMs into the infarcted hearts of immunodeficient mice showed good engraftment, and echocardiography showed significant functional improvement by cell therapy. Moreover, the imaging signal and ratio of Ki67-positive CMs at 3 months post injection indicated engrafted CMs proliferated in the host heart. Although this graft growth reached a plateau at 3 months, histological analysis confirmed progressive maturation from 3 to 6 months. These results suggested that day 20 CMs had very high engraftment, proliferation, and therapeutic potential in host mouse hearts. They also demonstrate this model can be used to track the fate of transplanted cells over a long time.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Sobrevivência de Enxerto , Células-Tronco Pluripotentes Induzidas/fisiologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Rastreamento de Células , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Antígeno Ki-67/genética , Antígeno Ki-67/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Imagem Óptica
11.
PLoS Comput Biol ; 11(9): e1004417, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26335304

RESUMO

Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils. We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i ≈1 µM; F/F0≈5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 µM (~3 to 100 fold from resting value of 0.1 µM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structure-induced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between rat and human cardiomyocytes.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/química , Sinalização do Cálcio/fisiologia , Biologia Computacional , Simulação por Computador , Masculino , Mitocôndrias/química , Modelos Biológicos , Miócitos Cardíacos/química , Miofibrilas/química , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/química
12.
PLoS One ; 10(5): e0127942, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26010537

RESUMO

Myocardial ischemia reperfusion injury (IRI) adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT) 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS)-3, an intrinsic negative feedback regulator of the Janus kinase (JAK)-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO). The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI.


Assuntos
Sistema de Sinalização das MAP Quinases , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Deleção de Genes , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/patologia , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética
13.
Cell Calcium ; 58(4): 349-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25659516

RESUMO

Excitable cells typically possess junctional membrane complexes (JMCs) constructed by the plasma membrane and the endo/sarcoplasmic reticulum (ER/SR) for channel crosstalk. These JMCs are termed triads in skeletal muscle, dyads in cardiac muscle, peripheral couplings in smooth and developing striated muscles, and subsurface cisterns in neurons. Junctophilin subtypes contribute to the formation and maintenance of JMCs by serving as a physical bridge between the plasma membrane and ER/SR membrane in different cell types. In muscle cells, junctophilin deficiency prevents JMC formation and functional crosstalk between cell-surface Ca(2+) channels and ER/SR Ca(2+) release channels. Human genetic mutations in junctophilin subtypes are linked to congenital hypertrophic cardiomyopathy and neurodegenerative diseases. Furthermore, growing evidence suggests that dysregulation of junctophilins induces pathological alterations in skeletal and cardiac muscle.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Humanos , Neurônios/metabolismo
14.
Glia ; 63(5): 736-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25557093

RESUMO

Abnormal structure and function of astrocytes have been observed within the lamina cribrosa region of the optic nerve head (ONH) in glaucomatous neurodegeneration. Glutamate excitotoxicity-mediated mitochondrial alteration has been implicated in experimental glaucoma. However, the relationships among glutamate excitotoxicity, mitochondrial alteration and ONH astrocytes in the pathogenesis of glaucoma remain unknown. We found that functional N-methyl-d-aspartate (NMDA) receptors (NRs) are present in human ONH astrocytes and that glaucomatous human ONH astrocytes have increased expression levels of NRs and the glutamate aspartate transporter. Glaucomatous human ONH astrocytes exhibit mitochondrial fission that is linked to increased expression of dynamin-related protein 1 and its phosphorylation at Serine 616. In BAC ALDH1L1 eGFP or Thy1-CFP transgenic mice, NMDA treatment induced axon loss as well as hypertrophic morphology and mitochondrial fission in astrocytes of the glial lamina. In human ONH astrocytes, NMDA treatment in vitro triggered mitochondrial fission by decreasing mitochondrial length and number, thereby reducing mitochondrial volume density. However, blocking excitotoxicity by memantine (MEM) prevented these alterations by increasing mitochondrial length, number and volume density. In glaucomatous DBA/2J (D2) mice, blocking excitotoxicity by MEM inhibited the morphological alteration as well as increased mitochondrial number and volume density in astrocytes of the glial lamina. However, blocking excitotoxicity decreased autophagosome/autolysosome volume density in both astrocytes and axons in the glial lamina of glaucomatous D2 mice. These findings provide evidence that blocking excitotoxicity prevents ONH astrocyte dysfunction in glaucomatous neurodegeneration by increasing mitochondrial fission, increasing mitochondrial volume density and length, and decreasing autophagosome/autolysosome formation. GLIA 2015;63:736-753.


Assuntos
Astrócitos , Glaucoma/patologia , Ácido Glutâmico/farmacologia , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Disco Óptico/patologia , Idoso , Idoso de 80 Anos ou mais , Aldeído Desidrogenase/genética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Astrócitos/fisiologia , Contagem de Células , Células Cultivadas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Pressão Intraocular/efeitos dos fármacos , Memantina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , N-Metilaspartato/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos
15.
EMBO J ; 33(23): 2798-813, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25349190

RESUMO

Mitochondrial dynamics and mitophagy have been linked to cardiovascular and neurodegenerative diseases. Here, we demonstrate that the mitochondrial division dynamin Drp1 and the Parkinson's disease-associated E3 ubiquitin ligase parkin synergistically maintain the integrity of mitochondrial structure and function in mouse heart and brain. Mice lacking cardiac Drp1 exhibited lethal heart defects. In Drp1KO cardiomyocytes, mitochondria increased their connectivity, accumulated ubiquitinated proteins, and decreased their respiration. In contrast to the current views of the role of parkin in ubiquitination of mitochondrial proteins, mitochondrial ubiquitination was independent of parkin in Drp1KO hearts, and simultaneous loss of Drp1 and parkin worsened cardiac defects. Drp1 and parkin also play synergistic roles in neuronal mitochondrial homeostasis and survival. Mitochondrial degradation was further decreased by combination of Drp1 and parkin deficiency, compared with their single loss. Thus, the physiological importance of parkin in mitochondrial homeostasis is revealed in the absence of mitochondrial division in mammals.


Assuntos
Encéfalo/metabolismo , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Miócitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Dinaminas/genética , Tomografia com Microscopia Eletrônica , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Cadeias Pesadas de Miosina/genética , Ubiquitinação
16.
Comput Methods Programs Biomed ; 113(1): 226-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24252469

RESUMO

In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit.


Assuntos
Imageamento Tridimensional , Software , Gráficos por Computador , Análise de Elementos Finitos , Interface Usuário-Computador
17.
Biophys J ; 104(11): L22-4, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23746531

RESUMO

We conducted super-resolution light microscopy (LM) imaging of the distribution of ryanodine receptors (RyRs) and caveolin-3 (CAV3) in mouse ventricular myocytes. Quantitative analysis of data at the surface sarcolemma showed that 4.8% of RyR labeling colocalized with CAV3 whereas 3.5% of CAV3 was in areas with RyR labeling. These values increased to 9.2 and 9.0%, respectively, in the interior of myocytes where CAV3 was widely expressed in the t-system but reduced in regions associated with junctional couplings. Electron microscopic (EM) tomography independently showed only few couplings with caveolae and little evidence for caveolar shapes on the t-system. Unexpectedly, both super-resolution LM and three-dimensional EM data (including serial block-face scanning EM) revealed significant increases in local t-system diameters in many regions associated with junctions. We suggest that this regional specialization helps reduce ionic accumulation and depletion in t-system lumen during excitation-contraction coupling to ensure effective local Ca²âº release. Our data demonstrate that super-resolution LM and volume EM techniques complementarily enhance information on subcellular structure at the nanoscale.


Assuntos
Caveolina 3/química , Caveolina 3/metabolismo , Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Nanoestruturas , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Citosol/metabolismo , Camundongos , Microscopia de Fluorescência , Miócitos Cardíacos/metabolismo , Transporte Proteico
18.
Biophys J ; 104(7): 1623-33, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23561539

RESUMO

Vinculin (Vcl) plays a key structural role in ventricular myocytes that, when disrupted, can lead to contractile dysfunction and dilated cardiomyopathy. To investigate the role of Vcl in myocyte and myocardial function, cardiomyocyte-specific Vcl knockout mice (cVclKO) and littermate control wild-type mice were studied with transmission electron microscopy (TEM) and in vivo magnetic resonance imaging (MRI) tagging before the onset of global ventricular dysfunction. MRI revealed significantly decreased systolic strains transverse to the myofiber axis in vivo, but no changes along the muscle fibers or in fiber tension in papillary muscles from heterozygous global Vcl null mice. Myofilament lattice spacing from TEM was significantly greater in cVclKO versus wild-type hearts fixed in the unloaded state. AFM in Vcl heterozygous null mouse myocytes showed a significant decrease in membrane cortical stiffness. A multiscale computational model of ventricular mechanics incorporating cross-bridge geometry and lattice mechanics showed that increased transverse systolic stiffness due to increased lattice spacing may explain the systolic wall strains associated with Vcl deficiency, before the onset of ventricular dysfunction. Loss of cardiac myocyte Vcl may decrease systolic transverse strains in vivo by decreasing membrane cortical tension, which decreases transverse compression of the lattice thereby increasing interfilament spacing and stress transverse to the myofibers.


Assuntos
Ventrículos do Coração/citologia , Ventrículos do Coração/fisiopatologia , Fenômenos Mecânicos , Miócitos Cardíacos/metabolismo , Disfunção Ventricular/metabolismo , Vinculina/metabolismo , Animais , Fenômenos Biomecânicos , Adesão Celular , Membrana Celular/metabolismo , Técnicas de Inativação de Genes , Ventrículos do Coração/patologia , Camundongos , Modelos Moleculares , Conformação Molecular , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Sarcômeros/metabolismo , Sarcômeros/patologia , Estresse Mecânico , Disfunção Ventricular/patologia , Vinculina/deficiência , Vinculina/genética
19.
J Mol Cell Cardiol ; 58: 5-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23201225

RESUMO

Advances in microscopic imaging technologies and associated computational methods now allow descriptions of cellular anatomy to go beyond 2-dimensions, revealing new micro-domain dynamics at unprecedented resolutions. In cardiomyocytes, electron microscopy (EM) first described junctional membrane complexes between the sarcolemma and sarcoplasmic reticulum over a half-century ago. Since then, 3-dimensional EM technologies such as electron tomography have become successful in determining the realistic nano-geometry of membrane junctions (dyads and peripheral junctions) and associated structures such as transverse tubules (T-tubules, aka. T-system). Concomitantly, super-resolution light microscopy has gone beyond the diffraction-limit to determine the distribution of molecules, such as ryanodine receptors, with 10(-8) meter (10nm) order accuracy. This review provides the current structural perspective and functional interpretation of membrane junction complexes, which are the central machinery controlling cardiac excitation-contraction coupling via calcium signaling.


Assuntos
Sinalização do Cálcio , Miocárdio/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Humanos , Junções Intercelulares/ultraestrutura , Membranas/ultraestrutura , Microscopia Eletrônica , Contração Muscular/fisiologia , Sarcolema/ultraestrutura , Retículo Sarcoplasmático/ultraestrutura
20.
J Biol Chem ; 287(35): 30024-34, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22745122

RESUMO

O-linked-N-acetyl-glucosamine glycosylation (O-GlcNAcylation) of the serine and threonine residues of cellular proteins is a dynamic process and affects phosphorylation. Prolonged O-GlcNAcylation has been linked to diabetes-related complications, including mitochondrial dysfunction. Mitochondria are dynamically remodeling organelles, that constantly fuse (fusion) and divide (fission). An imbalance of this process affects mitochondrial function. In this study, we found that dynamin-related protein 1 (DRP1) is O-GlcNAcylated in cardiomyocytes at threonine 585 and 586. O-GlcNAcylation was significantly enhanced by the chemical inhibition of N-acetyl-glucosaminidase. Increased O-GlcNAcylation decreases the phosphorylation of DRP1 at serine 637, which is known to regulate DRP1 function. In fact, increased O-GlcNAcylation augments the level of the GTP-bound active form of DRP1 and induces translocation of DRP1 from the cytoplasm to mitochondria. Mitochondrial fragmentation and decreased mitochondrial membrane potential also accompany the increased O-GlcNAcylation. In conclusion, this report shows, for the first time, that O-GlcNAcylation modulates DRP1 functionality in cardiac muscle cells.


Assuntos
Acetilglucosamina/metabolismo , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Dinaminas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Acetilação , Acetilglucosamina/genética , Acetilglucosaminidase/genética , Acetilglucosaminidase/metabolismo , Animais , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/patologia , Complicações do Diabetes/genética , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Dinaminas/genética , Humanos , Potencial da Membrana Mitocondrial/genética , Camundongos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Proteínas Musculares/genética , Miócitos Cardíacos/patologia , Fosforilação/genética , Transporte Proteico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...