Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272607

RESUMO

Neurons form dense neural circuits by connecting to each other via synapses and exchange information through synaptic receptors to sustain brain activities. Excitatory postsynapses form and mature on spines composed predominantly of actin, while inhibitory synapses are formed directly on the shafts of dendrites where both actin and microtubules (MTs) are present. Thus, it is the accumulation of specific proteins that characterizes inhibitory synapses. In this study, we explored the mechanisms that enable efficient protein accumulation at inhibitory postsynapse. We found that some inhibitory synapses function to recruit the plus end of MTs. One of the synaptic organizers, Teneurin-2 (TEN2), tends to localize to such MT-rich synapses and recruits MTs to inhibitory postsynapses via interaction with MT plus-end tracking proteins EBs. This recruitment mechanism provides a platform for the exocytosis of GABAA receptors. These regulatory mechanisms could lead to a better understanding of the pathogenesis of disorders such as schizophrenia and autism, which are caused by excitatory/inhibitory (E/I) imbalances during synaptogenesis.


Assuntos
Actinas , Receptores de GABA-A , Receptores de GABA-A/metabolismo , Actinas/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Microtúbulos/metabolismo , Exocitose
2.
Proc Natl Acad Sci U S A ; 119(45): e2210645119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322758

RESUMO

Thyroid hormones (THs) regulate gene expression by binding to nuclear TH receptors (TRs) in the cell. THs are indispensable for brain development. However, we have little knowledge about how congenital hypothyroidism in neurons affects functions of the central nervous system in adulthood. Here, we report specific TH effects on functional development of the cerebellum by using transgenic mice overexpressing a dominant-negative TR (Mf-1) specifically in cerebellar Purkinje cells (PCs). Adult Mf-1 mice displayed impairments in motor coordination and motor learning. Surprisingly, long-term depression (LTD)-inductive stimulation caused long-term potentiation (LTP) at parallel fiber (PF)-PC synapses in adult Mf-1 mice, although there was no abnormality in morphology or basal properties of PF-PC synapses. The LTP phenotype was turned to LTD in Mf-1 mice when the inductive stimulation was applied in an extracellular high-Ca2+ condition. Confocal calcium imaging revealed that dendritic Ca2+ elevation evoked by LTD-inductive stimulation is significantly reduced in Mf-1 PCs but not by PC depolarization only. Single PC messenger RNA quantitative analysis showed reduced expression of SERCA2 and IP3 receptor type 1 in Mf-1 PCs, which are essential for mGluR1-mediated internal calcium release from endoplasmic reticulum in cerebellar PCs. These abnormal changes were not observed in adult-onset PC-specific TH deficiency mice created by adeno-associated virus vectors. Thus, we propose the importance of TH action during neural development in establishing proper cerebellar function in adulthood, independent of its morphology. The present study gives insight into the cellular and molecular mechanisms underlying congenital hypothyroidism-induced dysfunctions of central nervous system and cerebellum.


Assuntos
Hipotireoidismo Congênito , Células de Purkinje , Camundongos , Animais , Células de Purkinje/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Cálcio/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Depressão , Hipotireoidismo Congênito/metabolismo , Sinapses/metabolismo , Cerebelo/fisiologia
3.
Commun Biol ; 5(1): 1224, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369525

RESUMO

Here we describe the microglia-targeting adeno-associated viral (AAV) vectors containing a 1.7-kb putative promoter region of microglia/macrophage-specific ionized calcium-binding adaptor molecule 1 (Iba1), along with repeated miRNA target sites for microRNA (miR)-9 and miR-129-2-3p. The 1.7-kb genomic sequence upstream of the start codon in exon 1 of the Iba1 (Aif1) gene, functions as microglia preferential promoter in the striatum and cerebellum. Furthermore, ectopic transgene expression in non-microglial cells is markedly suppressed upon adding two sets of 4-repeated miRNA target sites for miR-9 and miR-129-2-3p, which are expressed exclusively in non-microglial cells and sponged AAV-derived mRNAs. Our vectors transduced ramified microglia in healthy tissues and reactive microglia in lipopolysaccharide-treated mice and a mouse model of neurodegenerative disease. Moreover, live fluorescent imaging allowed the monitoring of microglial motility and intracellular Ca2+ mobilization. Thus, microglia-targeting AAV vectors are valuable for studying microglial pathophysiology and therapies, particularly in the striatum and cerebellum.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Animais , Camundongos , Lipopolissacarídeos , Microglia/metabolismo , MicroRNAs/genética , Doenças Neurodegenerativas/metabolismo , Transgenes
4.
Cerebellum ; 21(5): 776-783, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35218526

RESUMO

The cerebellum contains the highest density of protein kinase C (PKC) in the central nervous system. PKCγ, the major isotype accounting for over half of the PKCs in the cerebellum, is expressed exclusively in Purkinje cells (PCs). Inactivated PKCγ, which is localized in the cytoplasm of PC dendrites and soma, begins to translocate to the cell membrane upon activation. However, the physiological conditions that induce PKCγ translocation in PC remain largely unknown. Here, we virally expressed PKCγ-GFP in PCs and examined the conditions that induced its translocation to PC dendrites by whole-cell patch clamp analysis combined with confocal GFP fluorescence imaging. A single or repetitive (150 pulses at 5 Hz for 30 s) electrical stimulation to a climbing fiber (CF), which produced a complex spike(s) in PC, failed to induce translocation of PKCγ-GFP to the dendritic shaft of PCs. Direct current injection (+ 2 nA for 3 s) to PC also did not induce the translocation, although PCs generated simple spikes continuously at high rates. In contrast, high-frequency parallel fiber (PF) stimulation (50 pulses at 50 Hz for 1 s), which triggered action potentials followed by sustained depolarization (known as mGluR1-mediated slow depolarization), caused translocation of cytoplasmic PKCγ-GFP to the membrane. Low-frequency PF stimulation (150 pulses at 5 Hz for 30 s) induced continuous simple spike firing but did not induce translocation. These results suggest that CF-triggered depolarization, which causes Ca2+ influx through voltage-gated Ca2+ channels throughout PC dendrites and somas, is insufficient to induce the translocation of PKCγ, instead requiring high-frequency PF stimulation that activates mGluR1.


Assuntos
Células de Purkinje , Sinapses , Cerebelo/fisiologia , Dendritos/metabolismo , Proteína Quinase C/metabolismo , Células de Purkinje/fisiologia , Sinapses/fisiologia
5.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145028

RESUMO

The cerebellum, the site where protein kinase C (PKC) was first discovered, contains the highest amount of PKC in the central nervous system, with PKCγ being the major isoform. Systemic PKCγ-knockout (KO) mice showed impaired motor coordination and deficient pruning of surplus climbing fibers (CFs) from developing cerebellar Purkinje cells (PCs). However, the physiological significance of PKCγ in the mature cerebellum and the cause of motor incoordination remain unknown. Using adeno-associated virus vectors targeting PCs, we showed that impaired motor coordination was restored by re-expression of PKCγ in mature PKCγ-KO mouse PCs in a kinase activity-dependent manner, while normal motor coordination in mature Prkcgfl/fl mice was impaired by the Cre-dependent removal of PKCγ from PCs. Notably, the rescue or removal of PKCγ from mature PKCγ-KO or Prkcgfl/fl mice, respectively, did not affect the CF innervation profile of PCs, suggesting the presence of a mechanism distinct from multiple CF innervation of PCs for the motor defects in PKCγ-deficient mice. We found marked potentiation of Ca2+-activated large-conductance K+ (BK) channel currents in PKCγ-deficient mice, as compared to wild-type mice, which decreased the membrane resistance, resulting in attenuation of the electrical signal during the propagation and significant alterations of the complex spike waveform. These changes in PKCγ-deficient mice were restored by the rescue of PKCγ or pharmacological suppression of BK channels. Our results suggest that PKCγ is a critical regulator that negatively modulates BK currents in PCs, which significantly influences PC output from the cerebellar cortex and, eventually, motor coordination.


Assuntos
Terapia Genética , Atividade Motora/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Proteína Quinase C/metabolismo , Células de Purkinje/enzimologia , Animais , Sinalização do Cálcio , Deleção de Genes , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Canais de Potássio Cálcio-Ativados/genética , Proteína Quinase C/genética , Potenciais Sinápticos
6.
Food Chem Toxicol ; 159: 112751, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34871666

RESUMO

Recent studies showed a possible association between perfluorooctane sulfonate (PFOS) and developmental disabilities. We previously found the specific effects of PFOS exposure on learning and memory, however, its effect on the other developmental disabilities such as motor and social deficits remains unclear. We examined the effect of early lactational PFOS exposure on motor coordination, social activity, and anxiety in male mice. We orally administered a PFOS solution to dams from postnatal day 1-14. At 10 weeks old, we conducted a behavior test battery to evaluate motor performance, social activity, and anxiety, followed by electrophysiology and Western blot analysis. PFOS-exposed mice displayed impaired motor coordination. Whole-cell patch-clamp recordings from Purkinje cells revealed that the short-term and long-term plasticity at parallel fiber-Purkinje cell synapses are affected by PFOS exposure. Western blot analysis indicated that PFOS exposure increased syntaxin binding protein 1 (Munc18-1) and glutamate metabotropic receptor 1 (mGluR1) protein levels, which may be associated with the change in neurotransmitter release from parallel fibers and the level of long-term depression, respectively. The present study demonstrates that lactational PFOS exposure may have disrupted the pre- and postsynaptic plasticity at parallel fiber-Purkinje cell synapses, causing profound, long-lasting abnormal effects on the cerebellar function.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Cerebelo/efeitos dos fármacos , Exposição Dietética , Fluorocarbonos/toxicidade , Exposição Materna , Neurotoxinas/toxicidade , Animais , Ansiedade , Comportamento Animal/efeitos dos fármacos , Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiopatologia , Feminino , Lactação , Masculino , Camundongos , Desempenho Psicomotor/efeitos dos fármacos
7.
Mol Brain ; 14(1): 33, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588899

RESUMO

GABAergic interneurons play a critical role in tuning neural networks in the central nervous system, and their defects are associated with neuropsychiatric disorders. Currently, the mDlx enhancer is solely used for adeno-associated virus (AAV) vector-mediated transgene delivery into cortical interneurons. Here, we developed a new inhibitory neuron-specific promoter (designated as the mGAD65 promoter), with a length of 2.5 kb, from a mouse genome upstream of exon 1 of the Gad2 gene encoding glutamic acid decarboxylase (GAD) 65. Intravenous infusion of blood-brain barrier-penetrating AAV-PHP.B expressing an enhanced green fluorescent protein under the control of the mGAD65 promoter transduced the whole brain in an inhibitory neuron-specific manner. The specificity and efficiency of the mGAD65 promoter for GABAergic interneurons, which was assessed at the motor cortex, were almost identical to or slightly higher than those of the mDlx enhancer. Immunohistochemical analysis revealed that the mGAD65 promoter preferentially transduced parvalbumin (PV)-expressing interneurons. Notably, the mGAD65 promoter transduced chandelier cells more efficiently than the mDlx enhancer and robustly labeled their synaptic boutons, called the cartridge, targeting the axon initial segments of excitatory pyramidal neurons. To test the ability of the mGAD65 promoter to express a functional molecule, we virally expressed G-CaMP, a fluorescent Ca2+ indicator, in the motor cortex, and this enabled us to monitor spontaneous and drug-induced Ca2+ activity in GABAergic inhibitory neurons. These results suggest that the mGAD65 promoter is useful for AAV-mediated targeting and manipulation of GABAergic neurons with the dominance of cortical PV-expressing neurons, including chandelier cells.


Assuntos
Encéfalo/metabolismo , Dependovirus/metabolismo , Neurônios GABAérgicos/metabolismo , Plasmídeos/metabolismo , Transdução Genética , Animais , Cálcio/metabolismo , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Injeções Intravenosas , Interneurônios/metabolismo , Camundongos Endogâmicos C57BL , Córtex Motor/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Regiões Promotoras Genéticas
8.
J Neurosci ; 39(32): 6339-6353, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31201232

RESUMO

ADP-ribosylation factors (ARFs) are a family of small monomeric GTPases comprising six members categorized into three classes: class I (ARF1, 2, and 3), class II (ARF4 and 5), and class III (ARF6). In contrast to class I and III ARFs, which are the key regulators in vesicular membrane trafficking, the cellular function of class II ARFs remains unclear. In the present study, we generated class II ARF-deficient mice and found that ARF4+/-/ARF5-/- mice exhibited essential tremor (ET)-like behaviors. In vivo electrophysiological recordings revealed that ARF4+/-/ARF5-/- mice of both sexes exhibited abnormal brain activity when moving, raising the possibility of abnormal cerebellar excitability. Slice patch-clamp experiments demonstrated the reduced excitability of the cerebellar Purkinje cells (PCs) in ARF4+/-/ARF5-/- mice. Immunohistochemical and electrophysiological analyses revealed a severe and selective decrease of pore-forming voltage-dependent Na+ channel subunit Nav1.6, important for maintaining repetitive action potential firing, in the axon initial segment (AIS) of PCs. Importantly, this decrease in Nav1.6 protein localized in the AIS and the consequent tremors in ARF4+/-/ARF5-/- mice could be alleviated by the PC-specific expression of ARF5 using adeno-associated virus vectors. Together, our data demonstrate that the decreased expression of the class II ARF proteins in ARF4+/-/ARF5-/- mice, leading to a haploinsufficiency of ARF4 in the absence of ARF5, impairs the localization of Nav1.6 to the AIS and hence reduces the membrane excitability in PCs, resulting in the ET-like movement disorder. We suggest that class II ARFs function in localizing specific proteins, such as Nav1.6, to the AIS.SIGNIFICANCE STATEMENT We found that decreasing the expression of class II ARF proteins, through the generation of ARF4+/-/ARF5-/- mice, impairs Nav1.6 distribution to the axon initial segment (AIS) of cerebellar Purkinje cells (PCs), thereby resulting in the impairment of action potential firing of PCs. The ARF4+/-/ARF5-/- mutant mice exhibited movement-associated essential tremor (ET)-like behavior with pharmacological profiles similar to those in ET patients. The exogenous expression of ARF5 reduced the tremor phenotype and restored the localization of Nav1.6 immunoreactivity to the AIS in ARF4+/-/ARF5-/- mice. Thus, our results suggest that class II ARFs are involved in the localization of Nav1.6 to the AISs in cerebellar PCs and that the reduction of class II ARF activity leads to ET-like movement disorder.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Axônios/metabolismo , Transtornos dos Movimentos/etiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Células de Purkinje/metabolismo , Tremor/etiologia , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Potenciais de Ação , Animais , Dependovirus/genética , Eletroencefalografia , Eletromiografia , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Genótipo , Movimentos da Cabeça , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.6/deficiência , Técnicas de Patch-Clamp , Transporte Proteico , Células de Purkinje/fisiologia , Teste de Desempenho do Rota-Rod , Método Simples-Cego , Tremor/metabolismo , Tremor/fisiopatologia
9.
J Physiol ; 595(1): 141-164, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440721

RESUMO

KEY POINTS: Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease caused by a gene defect, leading to movement disorder such as cerebellar ataxia. It remains largely unknown which functional defect contributes to the cerebellar ataxic phenotype in SCA1. In this study, we report progressive dysfunction of metabotropic glutamate receptor (mGluR) signalling, which leads to smaller slow synaptic responses, reduced dendritic Ca2+ signals and impaired synaptic plasticity at cerebellar synapses, in the early disease stage of SCA1 model mice. We also show that enhancement of mGluR signalling by a clinically available drug, baclofen, leads to improvement of motor performance in SCA1 mice. SCA1 is an incurable disease with no effective treatment, and our results may provide mechanistic grounds for targeting mGluRs and a novel drug therapy with baclofen to treat SCA1 patients in the future. ABSTRACT: Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease that presents with cerebellar ataxia and motor learning defects. Previous studies have indicated that the pathology of SCA1, as well as other ataxic diseases, is related to signalling pathways mediated by the metabotropic glutamate receptor type 1 (mGluR1), which is indispensable for proper motor coordination and learning. However, the functional contribution of mGluR signalling to SCA1 pathology is unclear. In the present study, we show that SCA1 model mice develop a functional impairment of mGluR signalling which mediates slow synaptic responses, dendritic Ca2+ signals, and short- and long-term synaptic plasticity at parallel fibre (PF)-Purkinje cell (PC) synapses in a progressive manner from the early disease stage (5 postnatal weeks) prior to PC death. Notably, impairment of mGluR-mediated dendritic Ca2+ signals linearly correlated with a reduction of PC capacitance (cell surface area) in disease progression. Enhancement of mGluR signalling by baclofen, a clinically available GABAB receptor agonist, led to an improvement of motor performance in SCA1 mice and the improvement lasted ∼1 week after a single application of baclofen. Moreover, the restoration of motor performance in baclofen-treated SCA1 mice matched the functional recovery of mGluR-mediated slow synaptic currents and mGluR-dependent short- and long-term synaptic plasticity. These results suggest that impairment of synaptic mGluR cascades is one of the important contributing factors to cerebellar ataxia in early and middle stages of SCA1 pathology, and that modulation of mGluR signalling by baclofen or other clinical interventions may be therapeutic targets to treat SCA1.


Assuntos
Cerebelo/fisiopatologia , Receptores de Glutamato Metabotrópico/fisiologia , Ataxias Espinocerebelares/fisiopatologia , Animais , Baclofeno/farmacologia , Baclofeno/uso terapêutico , Fenômenos Biomecânicos , Cálcio/fisiologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Feminino , Agonistas dos Receptores de GABA-B/farmacologia , Agonistas dos Receptores de GABA-B/uso terapêutico , Membro Posterior/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Teste de Desempenho do Rota-Rod , Transdução de Sinais , Ataxias Espinocerebelares/tratamento farmacológico
10.
J Neurochem ; 140(3): 395-403, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27419919

RESUMO

It was previously reported that functional glycine receptors were expressed in neonatal prefrontal cortex; however, the glycine-releasing cells were unknown. We hypothesized that astrocytes might be a major glycine source, and examined the glycine release properties of astrocytes. We also hypothesized that dopamine (DA) might be a trigger for the astrocytic glycine release, as numerous DA terminals localize in the cortex. We combined two different methods to confirm the glycine release from astrocytes. Firstly, we analyzed the supernatant of astrocytes by amino acid analyzer after DA stimulation, and detect significant glycine peak. Furthermore, we utilized a patch-clamp biosensor method to confirm the glycine release from astrocytes by using GlyRα1 and Glyß-expressing HEK293T cells, and detected significant glycine-evoked current upon DA stimulation. Thus, we clearly demonstrated that DA induces glycine release from astrocytes. Surprisingly, DA caused a functional reversal of astrocytic glycine transporter 1, an astrocytic type of glycine transporter, causing astrocytes to release glycine. Hence, astrocytes transduce pre-synaptic DA signals to glycine signals through a reversal of astrocytic glycine transporter 1 to regulate neuronal excitability. Cover Image for this issue: doi: 10.1111/jnc.13785.


Assuntos
Astrócitos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Glicina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
J Physiol ; 589(Pt 13): 3191-209, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21558162

RESUMO

Staggerer mutant mice have functional loss of a transcription factor, retinoid-related orphan receptor α (RORα), which is abundantly expressed in Purkinje cells (PCs) of the cerebellum.Homozygous staggerer (sg/sg)mice show cerebellar hypoplasia and congenital ataxia. Sg/sg mice serve as an important extreme mouse model of the hereditary spinocerebellar ataxia type 1 (SCA1), since it has been shown that RORα dysfunction is strongly correlated with SCA1 pathogenesis. However, synaptic abnormalities, especially at parallel fibre (PF)-PC synapses, in SCA1-related sg/sg mice have not been examined in detail electrophysiologically. In this study, we report that PFs can still establish functional synapses onto PCs in sg/sg mice in spite of reduction in the number of PF-PC synapses. Compared with PF-evoked EPSCs in the wild-type or heterozygotes, the success rate of the EPSC recordings in sg/sg was quite low (∼40%) and the EPSCs showed faster kinetics and slightly decreased paired pulse facilitation at short intervals. The prominent synaptic dysfunction is that sg/sg mice lack metabotropic glutamate receptor (mGluR)-mediated slow EPSCs completely. Neither intense PF stimulation nor an exogenously applied mGluR agonist, DHPG, could elicit mGluR-mediated responses.Western blot analysis in the sg/sg cerebellum revealed low-level expression of mGluR1 and TRPC3, both of which underlie mGluR-mediated slow currents in PCs. Immunohistochemical data demonstrated marked mislocalization of mGluR1 on sg/sg PCs.We found that mGluR-mediated retrograde suppression of PF-PC EPSCs by endocannabinoid is also impaired completely in sg/sg mice. These results suggest that disruption of mGluR signalling at PF-PC synapses is one of the major synaptic defects in sg/sg mice and may manifest itself in SCA1 pathology.


Assuntos
Potenciais Pós-Sinápticos Excitadores/genética , Células de Purkinje/patologia , Receptores de Glutamato Metabotrópico/deficiência , Transdução de Sinais/genética , Ataxias Espinocerebelares/genética , Sinapses/genética , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Mutantes Neurológicos , Células de Purkinje/metabolismo , Distribuição Aleatória , Receptores de Glutamato Metabotrópico/fisiologia , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Sinapses/patologia
12.
Neuron ; 63(2): 216-29, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19640480

RESUMO

The mechanism coupling exocytosis and endocytosis remains to be elucidated at central synapses. Here, we show that the mechanism linking these two processes is dependent on microdomain-[Ca2+](i) similar to that which triggers exocytosis, as well as the exocytotic protein synaptobrevin/VAMP. Furthermore, block of endocytosis has a limited, retrograde action on exocytosis, delaying recruitment of release-ready vesicles and enhancing short-term depression. This effect sets in so rapidly that it cannot be explained by the nonavailability of recycled vesicles. Rather, we postulate that perturbation of a step linking exocytosis and endocytosis temporarily prevents new vesicles from docking at specialized sites for exocytosis.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Endocitose/fisiologia , Exocitose/fisiologia , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Tronco Encefálico/citologia , Dinaminas/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/metabolismo , Proteínas R-SNARE/metabolismo , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
13.
J Neurosci ; 27(52): 14286-98, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18160636

RESUMO

Recruitment of release-ready vesicles at synapses is one of the important factors, which determine dynamic properties of signaling between neurons in the brain. It has been shown that the rate of vesicle recruitment is accelerated by strong synaptic activity. An elevated concentration of calcium ions in the presynaptic terminal ([Ca2+]i) has been proposed to be responsible for this effect. However, the precise relationship between [Ca2+]i and recruitment has not been established yet, and the functional consequences of accelerated recruitment during synaptic activity have not been quantified experimentally. To probe the intracellular Ca2+ dependence of vesicle recruitment and to examine its functional role during trains of action potential (AP)-like stimuli, we monitored [Ca2+]i and synaptic responses simultaneously with paired recordings at the calyx of Held synapse. We found that a distinct, rapidly releasing vesicle pool is replenished with a rate that increases linearly with [Ca2+]i, without any apparent cooperativity. The slope factor for this increase is approximately 1 pool/(microM x s). Blocking Ca2+-dependent recruitment specifically with a calmodulin binding peptide revealed that the steady-state EPSCs during 100 Hz AP-like trains were maintained through this Ca2+-dependent recruitment mechanism. Using a simple model of vesicle dynamics, we estimated that the recruitment rate accelerated 10-fold during the steady-state compared with the rate at resting [Ca2+]i. We could also demonstrate an approximate sixfold increase in release probability (facilitation) during the initial 5-15 AP-like stimuli of such trains in our experimental condition, regardless of EPSC depression.


Assuntos
Cálcio/metabolismo , Terminações Pré-Sinápticas/fisiologia , Sinapses/metabolismo , Vesículas Sinápticas/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Animais Recém-Nascidos , Tronco Encefálico/citologia , Simulação por Computador , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Técnicas In Vitro , Modelos Biológicos , Peptídeos/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos da radiação , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia , Fatores de Tempo
14.
J Neurosci ; 25(16): 4062-72, 2005 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-15843608

RESUMO

Light responses of photoreceptors (rods and cones) are transmitted to the second-order neurons (bipolar cells and horizontal cells) via glutamatergic synapses located in the outer plexiform layer of the retina. Although it has been well established that postsynaptic group III metabotropic glutamate receptors (mGluRs) of ON bipolar cells contribute to generating the ON signal, presynaptic roles of group III mGluRs remain to be elucidated at this synaptic connection. We addressed this issue by applying the slice patch-clamp technique to the newt retina. OFF bipolar cells and horizontal cells generate a steady inward current in the dark and a transient inward current at light offset, both of which are mediated via postsynaptic non-NMDA receptors. A group III mGluR-specific agonist, L-2-amino-4-phosphonobutyric acid (L-AP-4), inhibited both the steady and off-transient inward currents but did not affect the glutamate-induced current in these postsynaptic neurons. L-AP-4 inhibited the presynaptic L-type calcium current (ICa) in cones by shifting the voltage dependence of activation to more positive membrane potentials. The inhibition of ICa was most prominent around the physiological range of cone membrane potentials. In contrast, L-AP-4 did not affect L-type ICa in rods. Paired recordings from photoreceptors and the synaptically connected second-order neurons confirmed that L-AP-4 inhibited both ICa and glutamate release in cones but not in rods. Furthermore, we found that exocytosed protons also inhibited ICa in cones but not in rods. Selective modulation of ICa in cones may help broaden the dynamic range of synaptic transfer by controlling the amount of transmitter release from cones.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Inibição Neural/fisiologia , Prótons , Receptores de AMPA/fisiologia , Retina/citologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Animais , Cálcio/metabolismo , Interações Medicamentosas , Estimulação Elétrica/métodos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Ácido Glutâmico/farmacologia , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacologia , HEPES/farmacologia , Técnicas In Vitro , Luz , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Inibição Neural/efeitos dos fármacos , Inibição Neural/efeitos da radiação , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Propionatos/farmacologia , Quinoxalinas/farmacologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Salamandridae , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos da radiação , Tionucleotídeos/farmacologia , Visão Ocular/efeitos dos fármacos , Visão Ocular/fisiologia , Visão Ocular/efeitos da radiação , Vias Visuais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...