Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(9): 3754-3762, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38402519

RESUMO

Extracellular vesicles (EVs) carry various informative components, including signaling proteins, transcriptional regulators, lipids, and nucleic acids. These components are utilized for cell-cell communication between donor and recipient cells. EVs have shown great promise as pharmaceutical-targeting vesicles and have attracted the attention of researchers in the fields of biological and medical science because of their importance as diagnostic and prognostic markers. However, the isolation and purification of EVs from cell-cultured media remain challenging. Ultracentrifugation is the most widely used method, but it requires specialized and expensive equipment. In the present study, we proposed a novel methodology to isolate EVs using a simple and convenient method, i.e., an EV catch-and-release isolation system (EV-CaRiS) using a net-charge invertible curvature-sensing peptide (NIC). Curvature-sensing peptides recognize vesicles by binding to lipid-packing defects on highly curved membranes regardless of the expression levels of biomarkers. NIC was newly designed to reversibly capture and release EVs in a pH-dependent manner. NIC allowed us to achieve reproducible EV isolation from three human cell lines on resin using a batch method and single-particle imaging of EVs containing the ubiquitous exosome markers CD63 and CD81 by total internal reflection fluorescence microscopy (TIRFM). EV-CaRiS was demonstrated as a simple and convenient methodology for EV isolation, and NIC is promising for applications in the single-particle analysis of EVs.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Ultracentrifugação , Linhagem Celular , Peptídeos/metabolismo
2.
Plant Cell Physiol ; 49(11): 1758-63, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18849574

RESUMO

Sphingoid long-chain base (LCB) 1-phosphates are degradated by LCB 1-phosphate lyase to C(16) fatty aldehydes and phosphoethanolamine. Here, we confirmed that the At1g27980 gene product, AtDPL1, is a functional LCB-1-phosphate lyase. Expression of green fluorescent protein fusion products in suspension-cultured Arabidopsis cells showed that AtDPL1 is located to the endoplasmic reticulum. The rates of fresh weight decreases of dpl1-1 and dpl1-2 mutants were significantly slower than those of the wild-type plants. This ability to limit their transpiration reflected the leaf temperature of the mutant plants more than that of wild-type plants, suggesting that AtDPL1 plays a role in dehydration stress.


Assuntos
Aldeído Liases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Desidratação/metabolismo , Fosfatos/metabolismo , Aldeído Liases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Retículo Endoplasmático/metabolismo , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mutagênese Insercional , Mutação , Transpiração Vegetal , RNA de Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...