Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 193, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956724

RESUMO

BACKGROUND: The human induced pluripotent stem cells (hiPSCs) can generate all the cells composing the human body, theoretically. Therefore, hiPSCs are thought to be a candidate source of stem cells for regenerative medicine. The major challenge of allogeneic hiPSC-derived cell products is their immunogenicity. The hypoimmunogenic cell strategy is allogenic cell therapy without using immune suppressants. Advances in gene engineering technology now permit the generation of hypoimmunogenic cells to avoid allogeneic immune rejection. In this study, we generated a hypoimmunogenic hiPSC (HyPSC) clone that had diminished expression of human leukocyte antigen (HLA) class Ia and class II and expressed immune checkpoint molecules and a safety switch. METHODS: First, we generated HLA class Ia and class II double knockout (HLA class Ia/II DKO) hiPSCs. Then, a HyPSC clone was generated by introducing exogenous ß-2-microglobulin (B2M), HLA-G, PD-L1, and PD-L2 genes, and the Rapamycin-activated Caspase 9 (RapaCasp9)-based suicide gene as a safety switch into the HLA class Ia/II DKO hiPSCs. The characteristics and immunogenicity of the HyPSCs and their derivatives were analyzed. RESULTS: We found that the expression of HLA-G on the cell surface can be enhanced by introducing the exogenous HLA-G gene along with B2M gene into HLA class Ia/II DKO hiPSCs. The HyPSCs retained a normal karyotype and had the characteristics of pluripotent stem cells. Moreover, the HyPSCs could differentiate into cells of all three germ layer lineages including CD45+ hematopoietic progenitor cells (HPCs), functional endothelial cells, and hepatocytes. The HyPSCs-derived HPCs exhibited the ability to evade innate and adaptive immunity. Further, we demonstrated that RapaCasp9 could be used as a safety switch in vitro and in vivo. CONCLUSION: The HLA class Ia/II DKO hiPSCs armed with HLA-G, PD-L1, PD-L2, and RapaCasp9 molecules are a potential source of stem cells for allogeneic transplantation.


Assuntos
Imunidade Adaptativa , Antígeno B7-H1 , Antígenos HLA-G , Imunidade Inata , Células-Tronco Pluripotentes Induzidas , Proteína 2 Ligante de Morte Celular Programada 1 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Antígenos HLA-G/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/genética , Animais , Camundongos
3.
Stem Cell Res Ther ; 14(1): 83, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046329

RESUMO

Stem cell replacement holds the potential for sensorineural hearing loss (SNHL) treatment. However, its translation into clinical practice requires strategies for improving stem cell survival following intracochlear transplantation. Considering recent findings showing that the inner ear contains a resident population of immune cells, we hypothesized that immune evasion would improve the survival and residence time of transplanted stem cells in the cochlea, potentially leading to better outcomes. To test this, we leveraged genetic engineering techniques to develop hypoimmunogenic human-induced pluripotent stem cells (hi-iPSC), which lack human leukocyte antigen expression. We found that gene editing does not affect the biological properties of hi-iPSCs, including their capacity to differentiate into otic neural progenitors (ONPs). Compared to wild-type ONPs, more hypoimmunogenic ONPs (derived from hi-iPSCs) were found in the inner ear of immunocompetent mice ten days following cochlear xenotransplantation. This approach may open a new avenue for experimental and clinical SNHL treatments.


Assuntos
Perda Auditiva , Células-Tronco Pluripotentes Induzidas , Camundongos , Humanos , Animais , Transplante Heterólogo , Diferenciação Celular , Perda Auditiva/metabolismo , Transplante de Células-Tronco/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo
4.
Mol Cell Biol ; 41(11): e0023621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34398680

RESUMO

Heme oxygenase 1 (HO-1) is the key enzyme for heme catabolism and cytoprotection. Whereas HO-1 gene expression in response to various stresses has been investigated extensively, the precise mechanisms by which HO-1 gene expression is regulated by the HO-1 substrate heme remain elusive. To systematically examine whether stress-mediated induction and substrate-mediated induction of HO-1 utilize similar or distinct regulatory pathways, we developed an HO-1-DsRed-knock-in reporter mouse in which the HO-1 gene is floxed by loxP sites and the DsRed gene has been inserted. Myeloid lineage-specific recombination of the floxed locus led to fluorescence derived from expression of the HO-1-DsRed fusion protein in peritoneal macrophages. We also challenged general recombination of the locus and generated mice harboring heterozygous recombinant alleles, which enabled us to monitor HO-1-DsRed expression in the whole body in vivo and ex vivo. HO-1 inducers upregulated HO-1-DsRed expression in myeloid lineage cells isolated from the mice. Notably, analyses of peritoneal macrophages from HO-1-DsRed mice lacking NRF2, a major regulator of the oxidative/electrophilic stress response, led us to identify NRF2-dependent stress response-mediated HO-1 induction and NRF2-independent substrate-mediated HO-1 induction. Thus, the HO-1 gene is subjected to at least two distinct levels of regulation, and the available lines of evidence suggest that substrate induction in peritoneal macrophages is independent of CNC family-based regulation.


Assuntos
Regulação da Expressão Gênica/genética , Heme Oxigenase-1/genética , Heme/metabolismo , Macrófagos Peritoneais/metabolismo , Proteínas de Membrana/genética , Estresse Oxidativo/genética , Animais , Antioxidantes/metabolismo , Bilirrubina/metabolismo , Biliverdina/metabolismo , Heme Oxigenase-1/biossíntese , Proteínas Luminescentes/genética , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/fisiologia
5.
Genes Dev ; 32(23-24): 1537-1549, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463901

RESUMO

Human globin gene production transcriptionally "switches" from fetal to adult synthesis shortly after birth and is controlled by macromolecular complexes that enhance or suppress transcription by cis elements scattered throughout the locus. The DRED (direct repeat erythroid-definitive) repressor is recruited to the ε-globin and γ-globin promoters by the orphan nuclear receptors TR2 (NR2C1) and TR4 (NR2C2) to engender their silencing in adult erythroid cells. Here we found that nuclear receptor corepressor-1 (NCoR1) is a critical component of DRED that acts as a scaffold to unite the DNA-binding and epigenetic enzyme components (e.g., DNA methyltransferase 1 [DNMT1] and lysine-specific demethylase 1 [LSD1]) that elicit DRED function. We also describe a potent new regulator of γ-globin repression: The deubiquitinase BRCA1-associated protein-1 (BAP1) is a component of the repressor complex whose activity maintains NCoR1 at sites in the ß-globin locus, and BAP1 inhibition in erythroid cells massively induces γ-globin synthesis. These data provide new mechanistic insights through the discovery of novel epigenetic enzymes that mediate γ-globin gene repression.


Assuntos
Regulação da Expressão Gênica/genética , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , gama-Globinas/genética , Sítios de Ligação , Linhagem Celular , Ativação Enzimática/genética , Epigênese Genética/genética , Células Eritroides/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Células K562 , Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Domínios Proteicos , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo
6.
J Immunol ; 201(11): 3465-3470, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30381480

RESUMO

Allelic exclusion is a vital mechanism for the generation of monospecificity to foreign Ags in B and T lymphocytes. In this study, we developed a high-throughput barcoded method to simultaneously analyze the VDJ recombination status of both mouse TCR-ß alleles in hundreds of single cells using next-generation sequencing.


Assuntos
Linfócitos B/imunologia , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/imunologia , Alelos , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única , Recombinação V(D)J
7.
Sci Rep ; 8(1): 8037, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795117

RESUMO

Numerous small molecules (termed inducers), many of which are electrophiles, upregulate cytoprotective responses and inhibit pro-inflammatory pathways by activating nuclear factor-erythroid 2 p45-related factor 2 (NRF2). Key to NRF2 activation is the ability to chemically modifying critical sensor cysteines in the main negative regulator of NRF2, Kelch-like ECH-associated protein 1 (KEAP1), of which C151, C273 and C288 are best characterized. This study aimed to establish the requirement for these cysteine sensor(s) for the biological activities of the most potent NRF2 activators known to date, the cyclic cyanoenones, some of which are in clinical trials. It was found that C151 in KEAP1 is the main cysteine sensor for this class of inducers, irrespective of molecular size or shape. Furthermore, in primary macrophage cells expressing C151S mutant KEAP1, at low concentrations, the tricyclic cyanoenone TBE-31 is inactive as an activator of NRF2 as well as an inhibitor of lipopolysaccharide-stimulated gene expression of the pro-inflammatory cytokines IL6 and IL1ß. However, at high inducer concentrations, NRF2 activation proceeds in the absence of C151, albeit at a lower magnitude. Our findings highlight the intrinsic flexibility of KEAP1 and emphasize the critical importance of establishing the precise dose of NRF2 activators for maintaining on-target selectivity.


Assuntos
Cisteína/química , Proteína 1 Associada a ECH Semelhante a Kelch/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Fenantrenos/farmacologia , Ativação Transcricional/efeitos dos fármacos , Animais , Células Cultivadas , Cisteína/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Fenantrenos/química , Regulação para Cima
8.
Sci Rep ; 8(1): 5605, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618724

RESUMO

In vertebrates, multiple transcription factors (TFs) bind to gene regulatory elements (promoters, enhancers, and silencers) to execute developmental expression changes. ChIP experiments are often used to identify where TFs bind to regulatory elements in the genome, but the requirement of TF-specific antibodies hampers analyses of tens of TFs at multiple loci. Here we tested whether TF binding predictions using ATAC-seq can be used to infer the identity of TFs that bind to functionally validated enhancers of the Cd4, Cd8, and Gata3 genes in thymocytes. We performed ATAC-seq at four distinct stages of development in mouse thymus, probing the chromatin accessibility landscape in double negative (DN), double positive (DP), CD4 single positive (SP4) and CD8 SP (SP8) thymocytes. Integration of chromatin accessibility with TF motifs genome-wide allowed us to infer stage-specific occupied TF binding sites within known and potentially novel regulatory elements. Our results provide genome-wide stage-specific T cell open chromatin profiles, and allow the identification of candidate TFs that drive thymocyte differentiation at each developmental stage.


Assuntos
Timo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Antígenos CD4/genética , Antígenos CD4/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Timo/citologia , Timo/crescimento & desenvolvimento , Fatores de Transcrição/genética
9.
Mol Cell Biol ; 37(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28320875

RESUMO

Allelic exclusion describes the essential immunological process by which feedback repression of sequential DNA rearrangements ensures that only one autosome expresses a functional T or B cell receptor. In wild-type mammals, approximately 60% of cells have recombined the DNA of one T cell receptor ß (TCRß) V-to-DJ-joined allele in a functional configuration, while the second allele has recombined only the DJ sequences; the other 40% of cells have recombined the V to the DJ segments on both alleles, with only one of the two alleles predicting a functional TCRß protein. Here we report that the transgenic overexpression of GATA3 leads predominantly to biallelic TCRß gene (Tcrb) recombination. We also found that wild-type immature thymocytes can be separated into distinct populations based on intracellular GATA3 expression and that GATA3LO cells had almost exclusively recombined only one Tcrb locus (that predicted a functional receptor sequence), while GATA3HI cells had uniformly recombined both Tcrb alleles (one predicting a functional and the other predicting a nonfunctional rearrangement). These data show that GATA3 abundance regulates the recombination propensity at the Tcrb locus and provide new mechanistic insight into the historic immunological conundrum for how Tcrb allelic exclusion is mediated.


Assuntos
Alelos , Fator de Transcrição GATA3/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Animais , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica , Ontologia Genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Mutação/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Baço/metabolismo , Timócitos/metabolismo , Recombinação V(D)J/genética
10.
J Clin Invest ; 126(3): 865-78, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26808502

RESUMO

The transcription factor GATA3 is essential for the genesis and maturation of the T cell lineage, and GATA3 dysregulation has pathological consequences. Previous studies have shown that GATA3 function in T cell development is regulated by multiple signaling pathways and that the Notch nuclear effector, RBP-J, binds specifically to the Gata3 promoter. We previously identified a T cell-specific Gata3 enhancer (Tce1) lying 280 kb downstream from the structural gene and demonstrated in transgenic mice that Tce1 promoted T lymphocyte-specific transcription of reporter genes throughout T cell development; however, it was not clear if Tce1 is required for Gata3 transcription in vivo. Here, we determined that the canonical Gata3 promoter is insufficient for Gata3 transcriptional activation in T cells in vivo, precluding the possibility that promoter binding by a host of previously implicated transcription factors alone is responsible for Gata3 expression in T cells. Instead, we demonstrated that multiple lineage-affiliated transcription factors bind to Tce1 and that this enhancer confers T lymphocyte-specific Gata3 activation in vivo, as targeted deletion of Tce1 in a mouse model abrogated critical functions of this T cell-regulatory element. Together, our data show that Tce1 is both necessary and sufficient for critical aspects of Gata3 T cell-specific transcriptional activity.


Assuntos
Elementos Facilitadores Genéticos , Fator de Transcrição GATA3/genética , Animais , Linfócitos T CD4-Positivos/fisiologia , Diferenciação Celular , Linhagem da Célula , Feminino , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Ligação Proteica , Timócitos/fisiologia , Transcrição Gênica
11.
Genes Dev ; 29(18): 1930-41, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26385963

RESUMO

Protein abundance must be precisely regulated throughout life, and nowhere is the stringency of this requirement more evident than during T-cell development: A twofold increase in the abundance of transcription factor GATA3 results in thymic lymphoma, while reduced GATA3 leads to diminished T-cell production. GATA3 haploinsufficiency also causes human HDR (hypoparathyroidism, deafness, and renal dysplasia) syndrome, often accompanied by immunodeficiency. Here we show that loss of one Gata3 allele leads to diminished expansion (and compromised development) of immature T cells as well as aberrant induction of myeloid transcription factor PU.1. This effect is at least in part mediated transcriptionally: We discovered that Gata3 is monoallelically expressed in a parent of origin-independent manner in hematopoietic stem cells and early T-cell progenitors. Curiously, half of the developing cells switch to biallelic Gata3 transcription abruptly at midthymopoiesis. We show that the monoallelic-to-biallelic transcriptional switch is stably maintained and therefore is not a stochastic phenomenon. This unique mechanism, if adopted by other regulatory genes, may provide new biological insights into the rather prevalent phenomenon of monoallelic expression of autosomal genes as well as into the variably penetrant pathophysiological spectrum of phenotypes observed in many human syndromes that are due to haploinsufficiency of the affected gene.


Assuntos
Alelos , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica/genética , Linfócitos T/metabolismo , Animais , Medula Óssea/metabolismo , Proliferação de Células/genética , Células Cultivadas , Fator de Transcrição GATA3/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/genética , Timócitos/citologia , Timócitos/metabolismo , Transativadores/genética
12.
Blood ; 122(23): 3798-807, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24092935

RESUMO

In previous mass spectrometry and coimmune precipitation studies, we identified tripartite motif-containing 28 (TRIM28; also known as transcriptional intermediary factor1ß and Krüppel-associated box-associated protein-1) as a cofactor that specifically copurified with an NR2C1/NR2C2 (TR2/TR4) orphan nuclear receptor heterodimer that previous studies had implicated as an embryonic/fetal ß-type globin gene repressor. TRIM28 has been characterized as a transcriptional corepressor that can associate with many different transcription factors and can play functional roles in multiple tissues and cell types. Here, we tested the contribution of TRIM28 to globin gene regulation and erythropoiesis using a conditional loss-of-function in vivo model. We discovered that Trim28 genetic loss in the adult mouse leads to defective immature erythropoiesis in the bone marrow and consequently to anemia. We further found that TRIM28 controls erythropoiesis in a cell-autonomous manner by inducibly deleting Trim28 exclusively in hematopoietic cells. Finally, in the absence of TRIM28, we observed increased apoptosis as well as diminished expression of multiple erythroid transcription factors and heme biosynthetic enzymes in immature erythroid cells. Thus, TRIM28 is essential for the cell-autonomous development of immature erythroblasts in the bone marrow.


Assuntos
Eritroblastos/citologia , Eritroblastos/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Anemia/genética , Anemia/patologia , Animais , Apoptose/genética , Apoptose/fisiologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Eritropoese/genética , Eritropoese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Proteína 28 com Motivo Tripartido , Globinas beta/genética
13.
Free Radic Biol Med ; 53(12): 2256-62, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23051009

RESUMO

Atherosclerosis is the major etiology underlying myocardial infarction and stroke, and strategies for preventing atherosclerosis are urgently needed. In the context of atherosclerosis, the deletion of the Nrf2 gene, which encodes a master regulator of the oxidative stress response in mammals, reportedly attenuates atherosclerosis formation. However, the precise mechanisms of protection against atherosclerosis are largely unknown. To further clarify the role of Nrf2 in atherosclerosis in vivo, we performed a time course analysis of atherosclerosis development utilizing an ApoE knockout (KO) mouse model. The results demonstrate that oil red O-stainable lesions were similar in size 5 weeks after the initiation of an HFC (high fat and high cholesterol) diet, but the lesions were markedly attenuated in the Nrf2 and ApoE double KO mice (A0N0 mice) compared with the lesions in the ApoE KO mice (A0N2 mice) at 12 weeks. Consistent with these results, the immunohistochemical analysis revealed that Nrf2 activation is observed in late-stage atherosclerotic plaques but not in earlier lesions. The RT-qPCR analysis of 12-week atherosclerotic plaques revealed that Nrf2 target genes, such as Ho-1 and SLPI, are expressed at significantly lower levels in the A0N0 mice compared with the A0N2 mice, and this change was associated with a decreased expression of macrophage M1-subtype genes Arginase II and inducible NO synthase in the A0N0 mice. Furthermore, the bone marrow (BM) transplantation (BMT) analysis revealed that the Nrf2 activity in the BM-derived cells contributed to lesion formation. Therefore, our study has characterized the positive role of Nrf2 in the BM-derived cells during the development of atherosclerosis, which suggests that Nrf2 may influence the inflammatory reactions in the plaques.


Assuntos
Aterosclerose/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/imunologia , Aterosclerose/patologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Feminino , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/patologia , Ativação Transcricional
14.
J Clin Invest ; 122(10): 3705-17, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22996665

RESUMO

The transcription factor GATA-2 plays vital roles in quite diverse developmental programs, including hematopoietic stem cell (HSC) survival and proliferation. We previously identified a vascular endothelial (VE) enhancer that regulates GATA-2 activity in pan-endothelial cells. To more thoroughly define the in vivo regulatory properties of this enhancer, we generated a tamoxifen-inducible Cre transgenic mouse line using the Gata2 VE enhancer (Gata2 VECre) and utilized it to temporally direct tissue-specific conditional loss of Gata2. Here, we report that Gata2 VECre-mediated loss of GATA-2 led to anemia, hemorrhage, and eventual death in edematous embryos. We further determined that the etiology of anemia in conditional Gata2 mutant embryos involved HSC loss in the fetal liver, as demonstrated by in vitro colony-forming and immunophenotypic as well as in vivo long-term competitive repopulation experiments. We further documented that the edema and hemorrhage in conditional Gata2 mutant embryos were due to defective lymphatic development. Thus, we unexpectedly discovered that in addition to its contribution to endothelial cell development, the VE enhancer also regulates GATA-2 expression in definitive fetal liver and adult BM HSCs, and that GATA-2 function is required for proper lymphatic vascular development during embryogenesis.


Assuntos
Anemia/genética , Elementos Facilitadores Genéticos , Morte Fetal/genética , Fator de Transcrição GATA2/fisiologia , Hematopoese/genética , Hemorragia/genética , Sistema Linfático/embriologia , Anemia/embriologia , Animais , Divisão Celular , Sobrevivência Celular , Ensaio de Unidades Formadoras de Colônias , Feminino , Fator de Transcrição GATA2/deficiência , Fator de Transcrição GATA2/genética , Genes Reporter , Células-Tronco Hematopoéticas/patologia , Hemorragia/embriologia , Imunofenotipagem , Fígado/citologia , Fígado/embriologia , Sistema Linfático/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Gravidez , Tamoxifeno/farmacologia
15.
Blood ; 119(10): 2242-51, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22267605

RESUMO

Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin(-)Sca1(+)c-Kit(hi)CD150(+)CD48(-)) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well documented that GATA-3 is expressed in HSCs, a role for GATA-3 in any prethymic progenitor cell has not been established. In the present study, we show that Gata3-null mutant mice generate fewer LT-HSCs and that fewer Gata3-null LT-HSCs are in cycle. Furthermore, Gata3 mutant hematopoietic progenitor cells fail to be recruited into an increased cycling state after 5-fluorouracil-induced myelosuppression. Therefore, GATA-3 is required for the maintenance of a normal number of LT-HSCs and for their entry into the cell cycle.


Assuntos
Ciclo Celular/genética , Fator de Transcrição GATA3/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Proliferação de Células , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Mol Cell Biol ; 31(9): 1894-904, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21383068

RESUMO

Transcription factor GATA-3 is vital for multiple stages of T cell and natural killer (NK) cell development, and yet the factors that directly regulate Gata3 transcription during hematopoiesis are only marginally defined. Here, we show that neither of the Gata3 promoters, previously implicated in its tissue-specific regulation, is alone capable of directing Gata3 transcription in T lymphocytes. In contrast, by surveying large swaths of DNA surrounding the Gata3 locus, we located a cis element that can recapitulate aspects of the Gata3-dependent T cell regulatory program in vivo. This element, located 280 kbp 3' to the structural gene, directs both T cell- and NK cell-specific transcription in vivo but harbors no other tissue activity. This novel, distant element regulates multiple major developmental stages that require GATA-3 activity.


Assuntos
Fator de Transcrição GATA3/genética , Células Matadoras Naturais/metabolismo , Linfócitos T/metabolismo , Animais , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Células Matadoras Naturais/citologia , Leucopoese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T/citologia
17.
Biochem J ; 436(2): 387-97, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21382013

RESUMO

The transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) co-ordinately regulates ARE (antioxidant-response element)-mediated induction of cytoprotective genes in response to electrophiles and oxidative stress; however, the molecular mechanism controlling Nrf2-dependent gene expression is not fully understood. To identify factors that regulate Nrf2-dependent transcription, we searched for proteins that interact with the Nrf2-NT (N-terminal Nrf2 transactivation domain) by affinity purification from HeLa nuclear extracts. In the present study, we identified KAP1 [KRAB (Krüppel-associated box)-associated protein 1] as a novel Nrf2-NT-interacting protein. Pull-down analysis confirmed the interaction between KAP1 and Nrf2 in cultured cells and demonstrated that the N-terminal region of KAP1 binds to Nrf2-NT in vitro. Reporter assays showed that KAP1 facilitates Nrf2 transactivation activity in a dose-dependent manner. Furthermore, the induction of the Nrf2-dependent expression of HO-1 (haem oxygenase-1) and NQO1 [NAD(P)H quinone oxidoreductase 1] by DEM (diethyl maleate) was attenuated by KAP1 knockdown in NIH 3T3 fibroblasts. This finding established that KAP1 acts as a positive regulator of Nrf2. Although Nrf2 nuclear accumulation was unaffected by KAP1 knockdown, the ability of Nrf2 to bind to the regulatory region of HO-1 and NQO1 was reduced. Moreover, KAP1 knockdown enhanced the sensitivity of NIH 3T3 cells to tert-butylhydroquinone, H2O2 and diamide. These results support our contention that KAP1 participates in the oxidative stress response by maximizing Nrf2-dependent transcription.


Assuntos
Citoproteção/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo/fisiologia , Proteínas Repressoras/fisiologia , Animais , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Células NIH 3T3 , Ligação Proteica/fisiologia , Proteína 28 com Motivo Tripartido
18.
Arch Biochem Biophys ; 508(1): 101-9, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21303654

RESUMO

Iron is an essential element of hemoglobin, and efficient iron recycling from senescent erythrocytes by splenic macrophages is required for erythrocyte hemoglobin synthesis during erythropoiesis. Ferroportin 1 (Fpn1) is the sole iron exporter in mammals, and it also regulates iron reutilization. In this study, we demonstrated genetically that a redox-sensitive transcription factor, Nrf2, regulates Fpn1 mRNA expression in macrophages. Nrf2 activation by several electrophilic compounds commonly resulted in the upregulation of Fpn1 mRNA in bone marrow-derived and peritoneal macrophages obtained from wild-type mice but not from Nrf2 knockout mice. Further, Nrf2 activation enhanced iron release from the J774.1 murine macrophage cell line. Previous studies showed that inflammatory stimuli, such as LPS, downregulates macrophage Fpn1 by transcriptional and hepcidin-mediated post-translational mechanisms leading to iron sequestration by macrophages. We showed that two Nrf2 activators, diethyl maleate and sulforaphane (SFN; a natural Nrf2 activator found in broccoli), restored the LPS-induced suppression of Fpn1 mRNA in human and mouse macrophages, respectively. Furthermore, SFN counteracted the LPS-induced increase of Hepcidin mRNA by an Nrf2-independent mechanism in mouse peritoneal macrophages. These results demonstrate that Nrf2 regulates iron efflux from macrophages through Fpn1 gene transcription and suggest that Nrf2 may control iron metabolism during inflammation.


Assuntos
Proteínas de Transporte de Cátions/genética , Regulação para Baixo/efeitos dos fármacos , Ferro/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Indução Enzimática/efeitos dos fármacos , Heme Oxigenase-1/biossíntese , Hepcidinas , Humanos , Inflamação/genética , Inflamação/metabolismo , Isotiocianatos , Maleatos/farmacologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfóxidos , Tiocianatos/farmacologia , Regulação para Cima/efeitos dos fármacos
19.
Immunol Rev ; 238(1): 110-25, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20969588

RESUMO

GATA family transcription factors play multiple vital roles in hematopoiesis in many cell lineages, and in particular, T cells require GATA-3 for execution of several developmental steps. Transcriptional activation of the Gata3 gene is observed throughout T-cell development and differentiation in a stage-specific fashion. GATA-3 has been described as a master regulator of T-helper 2 (Th2) cell differentiation in mature CD4(+) T cells. During T-cell development in the thymus, its roles in the CD4 versus CD8 lineage choice and at the ß-selection checkpoint are the best characterized. In contrast, its importance prior to ß-selection has been obscured both by the developmental heterogeneity of double negative (DN) 1 thymocytes and the paucity of early T-lineage progenitors (ETPs), a subpopulation of DN1 cells that contains the most immature thymic progenitors that retain potent T-lineage developmental potential. By examining multiple lines of in vivo evidence procured through the analysis of Gata3 mutant mice, we have recently demonstrated that GATA-3 is additionally required at the earliest stage of thymopoiesis for the development of the ETP population. Here, we review the characterized functions of GATA-3 at each stage of T-cell development and discuss hypothetical molecular pathways that mediate these functions.


Assuntos
Fator de Transcrição GATA3/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Subpopulações de Linfócitos T/imunologia , Células Th2/imunologia , Timo/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Humanos , Camundongos , Camundongos Mutantes , Modelos Imunológicos , Timo/embriologia , Timo/crescimento & desenvolvimento
20.
Genes Cells ; 15(1): 77-89, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20015225

RESUMO

The first step of heme biosynthesis in animals is catalyzed by 5-aminolevulinate synthase (ALAS), which controls heme supply in various tissues. To clarify the roles that the nonspecific isoform of ALAS (ALAS-N) plays in vivo, we prepared a green fluorescent protein (GFP) knock-in mouse line in which the Alas1 gene (encoding ALAS-N) is replaced with a gfp gene. We found that mice bearing a homozygous knock-in allele (Alas1(GFP/GFP)) were lethal by embryonic day 8.5, demonstrating that ALAS-N is essential for early embryogenesis. Fluorescence microscopic and flow cytometric analyses of heterozygous mouse (Alas1(+/GFP)) tissues showed that the Alas1 expression level differs substantially in tissues; Alas1 is highly expressed in testis Leydig cells, exocrine glands (including submandibular and parotid glands), endocrine glands (such as adrenal and thyroid glands) and hematopoietic lineage cells (including neutrophils and eosinophils). Quantitative analyses of GFP mRNA and ALAS-N mRNA in various tissues of Alas1(+/GFP) mice suggested that the destabilization of ALAS-N mRNA was not uniform in the various tissues. These results thus lay bare that elaborate control of the endogenous heme supply operates in various mouse tissues through regulation of the ALAS-N expression level and that this control is essential for heme homeostasis in animals.


Assuntos
5-Aminolevulinato Sintetase/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , 5-Aminolevulinato Sintetase/metabolismo , Envelhecimento/genética , Animais , Linhagem da Célula/genética , Ritmo Circadiano/genética , Perda do Embrião/enzimologia , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/patologia , Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sistema Hematopoético/citologia , Sistema Hematopoético/metabolismo , Heterozigoto , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Especificidade de Órgãos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...