Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 604: 680-690, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34280766

RESUMO

Efficient, low-cost, and robust electrocatalysts development for overall water splitting is highly desirable for renewable energy production yet still remains challenging. In this work, Co9S8 nanoneedles arrays are synergistically integrated with NiFe-layered double hydroxide (NiFe-LDH) nanosheets to form Co9S8@NiFe-LDH core-branch hierarchical architectures supported on nickel foam (Co9S8@NiFe-LDH HAs/NF). The Co9S8@NiFe-LDH HAs/NF exhibits high catalytic performances for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with overpotential of 190 and 145 mV at 10 mA cm-2, respectively. The density functional theory calculations predict that the synergy between Co9S8 and NiFe-LDH contributes to the high catalytic performance by lowering the energy barrier of HER. When used as both anode and cathode electrocatalyst, it can deliver 10 mA cm-2 at a low cell voltage of 1.585 V with excellent long-term durability. This work opens a new avenue toward the exploration of highly efficient and stable electrocatalyst for overall water splitting.

2.
Nanotechnology ; 32(3): 035102, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002884

RESUMO

The efficiency of producing hydroxyl radicals (·OH) from hydrogen peroxide (H2O2) catalyzed by different iron compounds have been explored extensively. Exclusively, ferrocenecarboxylic acid (FCA) showed the best catalyzed activity for ·OH generation. Then, we designed and prepared near-infrared (NIR) light-responsive and folate-targeted nanoplatform, which co-delivered FCA, cisplatin and indocyanine green (ICG) for improving antitumor therapy through amplified oxidative stress. The noteworthy observation is that under the irradiation of NIR light, the lecithin structure could able to depolymerize through the photothermal conversion mechanism of encapsulated dye ICG, which has achieved an intelligent release of drugs. In addition, the released cisplatin is not only fully effective to damage the DNA of cancer cells but it is able to induce the production of intracellular H2O2, which could further be catalyzed by FCA to generate toxic ·OH for oxidative damage via Fenton and Haber-Weiss reaction. This original strategy may provide an efficient way for improved chemotherapy via amplified oxidative stress.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Compostos Ferrosos/administração & dosagem , Verde de Indocianina/administração & dosagem , Metalocenos/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Sistemas de Liberação de Medicamentos , Compostos Ferrosos/farmacologia , Ácido Fólico/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Verde de Indocianina/farmacologia , Células MCF-7 , Metalocenos/farmacologia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
J Control Release ; 321: 734-743, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32145265

RESUMO

Tumor microenvironment (TME)-responsive nanoformulations that catalyze a cascade of intracellular redox reactions showed promise for tumor treatment with high specificity and efficiency. In this study, we report Cu2+-doped zeolitic imidazolate frameworks-coated polydopamine nanoparticles (PDA@Cu/ZIF-8 NPs) for glutathione-triggered and photothermal-reinforced sequential catalytic therapy against breast cancer. In the TME, the PDA@Cu/ZIF-8 NPs could initially react with antioxidant glutathione (GSH), inducing GSH depletion and Cu+ generation. Whereafter, the generated Cu+ would catalyze local H2O2 to produce highly toxic hydroxyl radicals (·OH) through an efficient Fenton-like reaction even in weakly acidity. Importantly, the PDA could exert excellent photothermal conversion effect to simultaneously accelerate GSH consumption and improve the Fenton-like reaction for further expanding the intracellular oxidative stress, which innovatively achieves a synergistic photothermal-chemodynamic therapy for highly efficient anticancer treatment.


Assuntos
Neoplasias da Mama , Glutationa , Nanopartículas , Microambiente Tumoral , Neoplasias da Mama/terapia , Catálise , Linhagem Celular Tumoral , Glutationa/farmacologia , Humanos , Peróxido de Hidrogênio
4.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 5): o712, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23723865

RESUMO

There are two independent mol-ecules in the asymmetric unit of the title mol-ecule, C8H9N3S2, both of which exhibit an E conformation with the pyridine ring and di-thio-carbazate fragment located on opposite sides of the C=N bond. The pyridine ring and di-thio-carbazate group are approximately coplanar, with dihedral angles of 4.74 (1) and 8.77 (1)° between their planes in the two mol-ecules. In the crystal, mol-ecules are linked to each other via N-H⋯N hydrogen bonds, forming zigzag chains parallel to [10-1].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...