Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Fluids (1994) ; 32(9): 093304, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32982134

RESUMO

N95 respirators comprise a critical part of the personal protective equipment used by frontline health-care workers and are typically meant for one-time usage. However, the recent COVID-19 pandemic has resulted in a serious shortage of these masks leading to a worldwide effort to develop decontamination and re-use procedures. A major factor contributing to the filtration efficiency of N95 masks is the presence of an intermediate layer of charged polypropylene electret fibers that trap particles through electrostatic or electrophoretic effects. This charge can degrade when the mask is used. Moreover, simple decontamination procedures (e.g., use of alcohol) can degrade any remaining charge from the polypropylene, thus severely impacting the filtration efficiency post-decontamination. In this report, we summarize our results on the development of a simple laboratory setup allowing measurement of charge and filtration efficiency in N95 masks. In particular, we propose and show that it is possible to recharge the masks post-decontamination and recover filtration efficiency.

2.
Nanoscale ; 10(35): 16683-16691, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30155539

RESUMO

While 2D layers of WS2 have been extensively studied, there are very few investigations of WS2 nanotubes. These have usually been grown via a 2-step process involving a WO3-x intermediate. We report a simple process for the synthesis of WS2 nanotubes via the sulfurization of tungsten films under appropriate conditions and present details of their structural and optical properties that help elucidate the formation mechanism. Electron-beam evaporated films of tungsten are sulfurized under flowing N2 gas at 950-1000 °C temperature under atmospheric pressure to obtain WS2 nanotubes. High-resolution scanning and transmission electron microscopy studies show that 2D WS2 flakes curl up and wrap around themselves to form nanotubes. Interlayer spacings in both 'a' and 'c' directions are slightly smaller than the corresponding values in bulk and thin film WS2. Micro-photoluminescence and micro-transmission studies show a resonance that seems intrinsic to the WS2 nanotubes since it cannot be related to the known optical characteristics of WS2 flakes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...