Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Phys Lipids ; 238: 105090, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33971138

RESUMO

The fluidity and compositional heterogeneity of the mammalian plasma membrane play deterministic roles in a variety of membrane functions. Designing model bilayer systems allows for compositional control over these properties. Ceramide is a phospholipid capable of extensive headgroup-region hydrogen bonding, and we report here on the role of ceramide in planar model bilayers. We use fluorescence recovery after photobleaching (FRAP) to obtain translational diffusion constants of two chromophores in supported model bilayers composed of cholesterol, 1,2-dioleoyl-sn-phosphatidylcholine (DOPC), sphingomyelin, and ceramide. FRAP data for perylene report on the acyl chain region of the model bilayer and FRAP data for 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) sense diffusional dynamics in the bilayer headgroup region. Dynamics in the headgroup region exhibit anomalous diffusion behavior that is characteristic of spatially heterogeneous media.


Assuntos
Ceramidas/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Colesterol/química , Difusão , Recuperação de Fluorescência Após Fotodegradação , Corantes Fluorescentes/química , Ligação de Hidrogênio , Cinética , Perileno/química , Fosfatidilcolinas/química , Rodaminas/química , Esfingomielinas/química , Relação Estrutura-Atividade
2.
Chem Phys Lipids ; 238: 105091, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33992653

RESUMO

The interactions of molecules such as short-chain alcohols with the mammalian plasma membrane are thought to play a role in anesthetic effects. We have examined the concentration-dependent effects of ethanol and n-butanol on the fluidity of planar model lipid bilayer structures supported on mica. The supported model bilayer was composed of 1,2-dioleoyl-sn-phosphatidylcholine (DOPC), cholesterol, and sphingomyelin, and the bilayers were formed by vesicle fusion from extruded unilamellar vesicles (133 nm diameter, polydispersity index of 0.17). Controlled amounts of ethanol and n-butanol were added during vesicle deposition. Translational diffusion constants were obtained utilizing fluorescence recovery after photobleaching (FRAP) measurements on the micrometer scale with perylene as the fluorophore. The translational diffusion constants increased and then decreased with increasing ethanol concentration, with the bilayer structure degrading at ca. 0.8 M ethanol. A similar trend was observed for n-butanol at lower alcohol concentrations owing to greater interactions with phospholipid bilayer constituents. For n-butanol, the integrity of the planar bilayer structure deteriorated at ca. 0.4 M n-butanol. The results are consistent with bilayer interdigitation.


Assuntos
Bicamadas Lipídicas/química , 1-Butanol/química , Colesterol/química , Difusão , Etanol/química , Recuperação de Fluorescência Após Fotodegradação , Fusão de Membrana , Fosfatidilcolinas/química , Solventes/química , Esfingomielinas/química , Lipossomas Unilamelares/química
3.
JCI Insight ; 5(13)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641586

RESUMO

In diabetic dyslipidemia, cholesterol accumulates in the plasma membrane, decreasing fluidity and thereby suppressing the ability of cells to transduce ligand-activated signaling pathways. Liver X receptors (LXRs) make up the main cellular mechanism by which intracellular cholesterol is regulated and play important roles in inflammation and disease pathogenesis. N, N-dimethyl-3ß-hydroxy-cholenamide (DMHCA), a selective LXR agonist, specifically activates the cholesterol efflux arm of the LXR pathway without stimulating triglyceride synthesis. In this study, we use a multisystem approach to understand the effects and molecular mechanisms of DMHCA treatment in type 2 diabetic (db/db) mice and human circulating angiogenic cells (CACs), which are hematopoietic progenitor cells with vascular reparative capacity. We found that DMHCA is sufficient to correct retinal and BM dysfunction in diabetes, thereby restoring retinal structure, function, and cholesterol homeostasis; rejuvenating membrane fluidity in CACs; hampering systemic inflammation; and correcting BM pathology. Using single-cell RNA sequencing on lineage-sca1+c-Kit+ (LSK) hematopoietic stem cells (HSCs) from untreated and DMHCA-treated diabetic mice, we provide potentially novel insights into hematopoiesis and reveal DMHCA's mechanism of action in correcting diabetic HSCs by reducing myeloidosis and increasing CACs and erythrocyte progenitors. Taken together, these findings demonstrate the beneficial effects of DMHCA treatment on diabetes-induced retinal and BM pathology.


Assuntos
Medula Óssea/efeitos dos fármacos , Ácidos Cólicos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Retina/efeitos dos fármacos , Animais , Medula Óssea/patologia , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Colesterol/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Lipogênese/fisiologia , Receptores X do Fígado/metabolismo , Camundongos , Retina/patologia
4.
J Chem Phys ; 147(1): 013925, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688383

RESUMO

In a photodissociation experiment, the dynamics associated with creating reaction products with specific energies can be understood by a study of the product vector correlations. Upon excitation to the S1 state, N,N-dimethylnitrosamine (DMN) undergoes an excited-state geometry change from planar to pyramidal around the central N. The significant geometry change affects the vector correlations in the photoproducts. Using polarized lasers for 355 nm photodissociation of DMN and for NO photoproduct excitation in a velocity-mapped ion imaging apparatus reveals new vector correlation details among the parent transition dipole (µ), photofragment velocity (v), and photofragment angular momentum (j). The dissociation of DMN displays some µ-v correlation [ß02(20)=-0.2], little µ-j correlation [ß02(02)∼0], and, surprisingly, a v-j [ß00(22)] correlation that depends on the NO lambda doublet probed. The results point to the importance of the initial excited-state conformational change and uncover the presence of two photolysis channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...