Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(51): 32853-32884, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36425156

RESUMO

The lack of high-functioning p-type semiconductor oxide material is one of the critical challenges that face the widespread performance of transparent and flexible electronics. Cu x O nanostructured thin films are potentially appealing materials for such applications because of their innate p-type semi-conductivity, transparency, non-toxicity, abundant availability, and low-cost fabrication. This review summarizes current research on Cu x O nanostructured thin films deposited by the SILAR technique. After a brief introduction to the advantages of Cu x O semiconductor material, diverse approaches for depositing and growing such thin films are discussed. SILAR is one of the simplest deposition techniques in terms of better flexibility of the substrate choice, the capability of large-area fabrication, budget-friendly, deposition of stable and adherent film, low processing temperature for the film fabrication as well as reproducibility. In addition, various fabrication parameters such as types of copper salts, pH of precursors, number of cycles during immersion, annealing of as-deposited films, doping by diverse dopants, and growth temperature affect the rate of fabrication with the structural, electrical, and optical properties of Cu x O nanostructured thin films, which led the technique unique to study extensively. This review will include the recent progress that has recently been made in different aspects of Cu x O processed by the SILAR. It will describe the theory, mechanism, and factors affecting SILAR-deposited Cu x O. Finally, conclusions and perspectives concerning the use of Cu x O materials in optoelectronic devices will be visualized.

2.
R Soc Open Sci ; 9(3): 211899, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35360354

RESUMO

Cuprous oxide (Cu2O) nanorods have been deposited on soda-lime glass substrates by the modified successive ionic layer adsorption and reaction technique by varying the concentration of NaCl electrolyte into the precursor complex solution. The structural, electrical and optical properties of synthesized Cu2O nanorod films have been studied by a variety of characterization tools. Structural analyses by X-ray diffraction confirmed the polycrystalline Cu2O phase with (111) preferential growth. Raman scattering spectroscopic measurements conducted at room temperature also showed characteristic peaks of the pure Cu2O phase. The surface resistivity of the Cu2O nanorod films decreased from 15 142 to 685 Ω.cm with the addition of NaCl from 0 to 4 mmol and then exhibited an opposite trend with further addition of NaCl. The optical bandgap of the synthesized Cu2O nanorod films was observed as 1.88-2.36 eV, while the temperature-dependent activation energies of the Cu2O films were measured as about 0.14-0.21 eV. Scanning electron microscope morphologies demonstrated Cu2O nanorods as well as closely packed spherical grains with the alteration of NaCl concentration. The Cu2O phase of nanorods was found stable up to 230°C corroborating the optical bandgap results of the same. The film fabricated in presence of 4 mmol of NaCl showed the lowest resistivity and activation energy as well as comparatively uniform nanorod morphology. Our studies demonstrate that the nominal presence of NaCl electrolytes in the precursor solutions has a significant impact on the physical properties of Cu2O nanorod films which could be beneficial in optoelectronic research.

3.
ACS Omega ; 6(4): 2665-2674, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553884

RESUMO

Here, we report the effect of the substrate, sonication process, and postannealing on the structural, morphological, and optical properties of ZnO thin films grown in the presence of isopropyl alcohol (IPA) at temperature 30-65 °C by the successive ionic layer adsorption and reaction (SILAR) method on both soda lime glass (SLG) and Cu foil. The X-ray diffraction (XRD) patterns confirmed the preferential growth thin films along (002) and (101) planes of the wurtzite ZnO structure when deposited on SLG and Cu foil substrates, respectively. Both XRD and Raman spectra confirmed the ZnO and Cu-oxide phases of the deposited films. The scanning electron microscopy image of the deposited films shows compact and uniformly distributed grains for samples grown without sonication while using IPA at temperatures 50 and 65 °C. The postannealing treatment improves the crystallinity of the films, further evident by XRD and transmission and reflection results. The estimated optical band gaps are in the range of 3.37-3.48 eV for the as-grown samples. Our experimental results revealed that high-quality ZnO thin films could be grown without sonication using an IPA dispersant at 50 °C, which is much lower than the reported results using the SILAR method. This study suggests that in the presence of IPA, the SLG substrate results in better c-axis-oriented ZnO thin films than that of deionized water, ethylene glycol, and propylene glycol at the optimum temperature of 50 °C. Air annealing of the samples grown on Cu foils induced the formation of Cu x O/ZnO junctions, which is evident from the characteristic I-V curve including the structural and optical data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...