Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 176: 108555, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749323

RESUMO

Cardiovascular diagnostics relies heavily on the ECG (ECG), which reveals significant information about heart rhythm and function. Despite their significance, traditional ECG measures employing electrodes have limitations. As a result of extended electrode attachments, patients may experience skin irritation or pain, and motion artifacts may interfere with signal accuracy. Additionally, ECG monitoring usually requires highly trained professionals and specialized equipment, which increases the treatment's complexity and cost. In critical care scenarios, such as continuous monitoring of hospitalized patients, wearable sensors for collecting ECG data may be difficult to use. Although there are issues with ECG, it remains a valuable tool for diagnosing and monitoring cardiac disorders due to its non-invasive nature and the detailed information it provides about the heart. The goal of this study is to present an innovative method for generating continuous ECG waveforms from non-contact radar data by using Deep Learning. The method can eliminate the need for invasive or wearable biosensors and expensive equipment to collect ECGs. In this paper, we propose the MultiResLinkNet, a one-dimensional convolutional neural network (1D CNN) model for generating ECG signals from radar waveforms. With the help of a publicly accessible radar benchmark dataset, an end-to-end DL architecture is trained and assessed. There are six ports of raw radar data in this dataset, along with ground truth physiological signals collected from 30 participants in five distinct scenarios: Resting, Valsalva, Apnea, Tilt-up, and Tilt-down. By using strong temporal and spectral measurements, we assessed our proposed framework's ability to convert ECG data from Radar signals in three distinct scenarios, namely Resting, Valsalva, and Apnea (RVA). ECG segmentation performed better by MultiResLinkNet than by state-of-the-art networks in both combined and individual cases. As a result of the simulations, the resting, valsalva, and RVA scenarios showed the highest average temporal values, respectively: 66.09523 ± 19.33, 60.13625 ± 21.92, and 61.86265 ± 21.37. In addition, it exhibited the highest spectral correlation values (82.4388 ± 18.42 (Resting), 77.05186 ± 23.26 (Valsalva), 74.65785 ± 23.17 (Apnea), and 79.96201 ± 20.82 (RVA)), along with minimal temporal and spectral errors in almost every case. The qualitative evaluation revealed strong similarities between generated and actual ECG waveforms. As a result of our method of forecasting ECG patterns from remote radar data, we can monitor high-risk patients, especially those undergoing surgery.


Assuntos
Aprendizado Profundo , Eletrocardiografia , Radar , Processamento de Sinais Assistido por Computador , Humanos , Eletrocardiografia/métodos
2.
Bioengineering (Basel) ; 10(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37237649

RESUMO

Electroencephalogram (EEG) signals immensely suffer from several physiological artifacts, including electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG) artifacts, which must be removed to ensure EEG's usability. This paper proposes a novel one-dimensional convolutional neural network (1D-CNN), i.e., MultiResUNet3+, to denoise physiological artifacts from corrupted EEG. A publicly available dataset containing clean EEG, EOG, and EMG segments is used to generate semi-synthetic noisy EEG to train, validate and test the proposed MultiResUNet3+, along with four other 1D-CNN models (FPN, UNet, MCGUNet, LinkNet). Adopting a five-fold cross-validation technique, all five models' performance is measured by estimating temporal and spectral percentage reduction in artifacts, temporal and spectral relative root mean squared error, and average power ratio of each of the five EEG bands to whole spectra. The proposed MultiResUNet3+ achieved the highest temporal and spectral percentage reduction of 94.82% and 92.84%, respectively, in EOG artifacts removal from EOG-contaminated EEG. Moreover, compared to the other four 1D-segmentation models, the proposed MultiResUNet3+ eliminated 83.21% of the spectral artifacts from the EMG-corrupted EEG, which is also the highest. In most situations, our proposed model performed better than the other four 1D-CNN models, evident by the computed performance evaluation metrics.

3.
Sensors (Basel) ; 22(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35590859

RESUMO

The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals, highly non-stationary in nature, greatly suffers from motion artifacts while recorded using wearable sensors. Since successful detection of various neurological and neuromuscular disorders is greatly dependent upon clean EEG and fNIRS signals, it is a matter of utmost importance to remove/reduce motion artifacts from EEG and fNIRS signals using reliable and robust methods. In this regard, this paper proposes two robust methods: (i) Wavelet packet decomposition (WPD) and (ii) WPD in combination with canonical correlation analysis (WPD-CCA), for motion artifact correction from single-channel EEG and fNIRS signals. The efficacy of these proposed techniques is tested using a benchmark dataset and the performance of the proposed methods is measured using two well-established performance matrices: (i) difference in the signal to noise ratio ( ) and (ii) percentage reduction in motion artifacts ( ). The proposed WPD-based single-stage motion artifacts correction technique produces the highest average (29.44 dB) when db2 wavelet packet is incorporated whereas the greatest average (53.48%) is obtained using db1 wavelet packet for all the available 23 EEG recordings. Our proposed two-stage motion artifacts correction technique, i.e., the WPD-CCA method utilizing db1 wavelet packet has shown the best denoising performance producing an average and values of 30.76 dB and 59.51%, respectively, for all the EEG recordings. On the other hand, for the available 16 fNIRS recordings, the two-stage motion artifacts removal technique, i.e., WPD-CCA has produced the best average (16.55 dB, utilizing db1 wavelet packet) and largest average (41.40%, using fk8 wavelet packet). The highest average and using single-stage artifacts removal techniques (WPD) are found as 16.11 dB and 26.40%, respectively, for all the fNIRS signals using fk4 wavelet packet. In both EEG and fNIRS modalities, the percentage reduction in motion artifacts increases by 11.28% and 56.82%, respectively when two-stage WPD-CCA techniques are employed in comparison with the single-stage WPD method. In addition, the average also increases when WPD-CCA techniques are used instead of single-stage WPD for both EEG and fNIRS signals. The increment in both and values is a clear indication that two-stage WPD-CCA performs relatively better compared to single-stage WPD. The results reported using the proposed methods outperform most of the existing state-of-the-art techniques.


Assuntos
Artefatos , Análise de Correlação Canônica , Algoritmos , Eletroencefalografia/métodos , Movimento (Física) , Processamento de Sinais Assistido por Computador , Análise de Ondaletas
4.
Comput Biol Med ; 143: 105284, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35180500

RESUMO

The reverse transcription-polymerase chain reaction (RT-PCR) test is considered the current gold standard for the detection of coronavirus disease (COVID-19), although it suffers from some shortcomings, namely comparatively longer turnaround time, higher false-negative rates around 20-25%, and higher cost equipment. Therefore, finding an efficient, robust, accurate, and widely available, and accessible alternative to RT-PCR for COVID-19 diagnosis is a matter of utmost importance. This study proposes a complete blood count (CBC) biomarkers-based COVID-19 detection system using a stacking machine learning (SML) model, which could be a fast and less expensive alternative. This study used seven different publicly available datasets, where the largest one consisting of fifteen CBC biomarkers collected from 1624 patients (52% COVID-19 positive) admitted at San Raphael Hospital, Italy from February to May 2020 was used to train and validate the proposed model. White blood cell count, monocytes (%), lymphocyte (%), and age parameters collected from the patients during hospital admission were found to be important biomarkers for COVID-19 disease prediction using five different feature selection techniques. Our stacking model produced the best performance with weighted precision, sensitivity, specificity, overall accuracy, and F1-score of 91.44%, 91.44%, 91.44%, 91.45%, and 91.45%, respectively. The stacking machine learning model improved the performance in comparison to other state-of-the-art machine learning classifiers. Finally, a nomogram-based scoring system (QCovSML) was constructed using this stacking approach to predict the COVID-19 patients. The cut-off value of the QCovSML system for classifying COVID-19 and Non-COVID patients was 4.8. Six datasets from three different countries were used to externally validate the proposed model to evaluate its generalizability and robustness. The nomogram demonstrated good calibration and discrimination with the area under the curve (AUC) of 0.961 for the internal cohort and average AUC of 0.967 for all external validation cohort, respectively. The external validation shows an average weighted precision, sensitivity, F1-score, specificity, and overall accuracy of 92.02%, 95.59%, 93.73%, 90.54%, and 93.34%, respectively.

5.
Sensors (Basel) ; 22(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35161664

RESUMO

Cardiovascular diseases are the most common causes of death around the world. To detect and treat heart-related diseases, continuous blood pressure (BP) monitoring along with many other parameters are required. Several invasive and non-invasive methods have been developed for this purpose. Most existing methods used in hospitals for continuous monitoring of BP are invasive. On the contrary, cuff-based BP monitoring methods, which can predict systolic blood pressure (SBP) and diastolic blood pressure (DBP), cannot be used for continuous monitoring. Several studies attempted to predict BP from non-invasively collectible signals such as photoplethysmograms (PPG) and electrocardiograms (ECG), which can be used for continuous monitoring. In this study, we explored the applicability of autoencoders in predicting BP from PPG and ECG signals. The investigation was carried out on 12,000 instances of 942 patients of the MIMIC-II dataset, and it was found that a very shallow, one-dimensional autoencoder can extract the relevant features to predict the SBP and DBP with state-of-the-art performance on a very large dataset. An independent test set from a portion of the MIMIC-II dataset provided a mean absolute error (MAE) of 2.333 and 0.713 for SBP and DBP, respectively. On an external dataset of 40 subjects, the model trained on the MIMIC-II dataset provided an MAE of 2.728 and 1.166 for SBP and DBP, respectively. For both the cases, the results met British Hypertension Society (BHS) Grade A and surpassed the studies from the current literature.


Assuntos
Hipertensão , Fotopletismografia , Pressão Sanguínea , Determinação da Pressão Arterial , Eletrocardiografia , Humanos , Hipertensão/diagnóstico
6.
Sensors (Basel) ; 22(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35062533

RESUMO

A real-time Bangla Sign Language interpreter can enable more than 200 k hearing and speech-impaired people to the mainstream workforce in Bangladesh. Bangla Sign Language (BdSL) recognition and detection is a challenging topic in computer vision and deep learning research because sign language recognition accuracy may vary on the skin tone, hand orientation, and background. This research has used deep machine learning models for accurate and reliable BdSL Alphabets and Numerals using two well-suited and robust datasets. The dataset prepared in this study comprises of the largest image database for BdSL Alphabets and Numerals in order to reduce inter-class similarity while dealing with diverse image data, which comprises various backgrounds and skin tones. The papers compared classification with and without background images to determine the best working model for BdSL Alphabets and Numerals interpretation. The CNN model trained with the images that had a background was found to be more effective than without background. The hand detection portion in the segmentation approach must be more accurate in the hand detection process to boost the overall accuracy in the sign recognition. It was found that ResNet18 performed best with 99.99% accuracy, precision, F1 score, sensitivity, and 100% specificity, which outperforms the works in the literature for BdSL Alphabets and Numerals recognition. This dataset is made publicly available for researchers to support and encourage further research on Bangla Sign Language Interpretation so that the hearing and speech-impaired individuals can benefit from this research.


Assuntos
Aprendizado Profundo , Língua de Sinais , Mãos , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
7.
Comput Biol Med ; 142: 105184, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35016098

RESUMO

Tai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance of stroke survivors. However, the effect of Tai Chi on human gait dynamics is still less understood. Studies conducted in this domain only relied on statistical and clinical measurements on the time-series gait data. In recent years machine learning has proven its ability in recognizing complex patterns from time-series data. In this research work, we have evaluated the performance of several machine learning algorithms in classifying the walking gait of Tai Chi masters (people expert on Tai Chi) from the normal subjects. The study is designed in a longitudinal manner where the Tai Chi naive subjects received 6 months of Tai Chi training and the data was recorded during the initial and follow-up sessions. A total of 57 subjects participated in the experiment among which 27 were Tai Chi masters. We have introduced a gender, BMI-based scaling of the features to mitigate their effects from the gait parameters. A hybrid feature ranking technique has also been proposed for selecting the best features for classification. The research reports 88.17% accuracy and 93.10% ROC AUC values from subject-wise 5-fold cross-validation for the Tai Chi masters' vs normal subjects' walking gait classification for the "Single-task" walking scenarios. We have also got fairly good accuracy for the "Dual-task" walking scenarios (82.62% accuracy and 84.11% ROC AUC values). The results indicate that Tai Chi clearly has an effect on the walking gait dynamics. The findings and methodology of this study could provide preliminary guidance for applying machine learning-based approaches to similar gait kinematics analyses.


Assuntos
Tai Chi Chuan , Idoso , Fenômenos Biomecânicos , Marcha , Humanos , Aprendizado de Máquina , Tai Chi Chuan/métodos , Caminhada
8.
Comput Biol Med ; 142: 105238, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077938

RESUMO

Harnessing the inherent anti-spoofing quality from electroencephalogram (EEG) signals has become a potential field of research in recent years. Although several studies have been conducted, still there are some vital challenges present in the deployment of EEG-based biometrics, which is stable and capable of handling the real-world scenario. One of the key challenges is the large signal variability of EEG when recorded on different days or sessions which impedes the performance of biometric systems significantly. To address this issue, a session invariant multimodal Self-organized Operational Neural Network (Self-ONN) based ensemble model combining EEG and keystroke dynamics is proposed in this paper. Our model is tested successfully on a large number of sessions (10 recording days) with many challenging noisy and variable environments for the identification and authentication tasks. In most of the previous studies, training and testing were performed either over a single recording session (same day) only or without ensuring appropriate splitting of the data on multiple recording days. Unlike those studies, in our work, we have rigorously split the data so that train and test sets do not share the data of the same recording day. The proposed multimodal Self-ONN based ensemble model has achieved identification accuracy of 98% in rigorous validation cases and outperformed the equivalent ensemble of deep CNN models. A novel Self-ONN Siamese network has also been proposed to measure the similarity of templates during the authentication task instead of the commonly used simple distance measure techniques. The multimodal Siamese network reduces the Equal Error Rate (EER) to 1.56% in rigorous authentication. The obtained results indicate that the proposed multimodal Self-ONN model can automatically extract session invariant unique non-linear features to identify and authenticate users with high accuracy.


Assuntos
Identificação Biométrica , Identificação Biométrica/métodos , Biometria , Coleta de Dados , Eletroencefalografia/métodos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...