Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 153: 106505, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507996

RESUMO

We synthesize geometrically tailorable anisotropic plates by combining button shaped fish-scale like features on soft substrates, then lacing them with high-stiffness strings. This creates a new type of biomimetic architectured structure with multiple broken symmetries. First, the tendons and substrate together break the symmetry of the bending response between the concave and convex curvature. Next, the weave pattern of the tendons further breaks symmetry along the two directors of plates. The anisotropy is clearly evident in 3-point bending experiments. Motivated by these experiments and the need for design, we formulate an analytical energy-based model to quantify the anisotropic elasticity. The derived architecture-property relationships can be used to design architected tendon plates with desirable properties.


Assuntos
Tendões , Animais , Anisotropia , Elasticidade , Análise de Elementos Finitos
2.
Bioinspir Biomim ; 17(6)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35803252

RESUMO

Fish scale inspired materials and structures can provide advanced mechanical properties and functionalities. These materials, inspired by fish scales, take the form of either composite materials or multi-material discrete exoskeleton type structures. Over the last decade they have been under intense scrutiny for generating tailorable and tunable stiffness, penetration and fracture resistance, buckling prevention, nonlinear damping, hydrodynamic and camouflaging functions. Such programmable behavior emerges from leveraging their unique morphology and structure-property relationships. Several advanced tools for characterization, manufacturing, modeling and computation have been employed to understand and discover their behavior. With the rapid proliferation of additive manufacturing techniques and advances in modeling and computational methods, this field is seeing renewed efforts to realize even more ambitious designs. In this paper we present a review and recapitulation of the state-of-the art of fish scale inspired materials.


Assuntos
Materiais Biomiméticos , Animais , Materiais Biomiméticos/química , Peixes , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...