Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400513, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162697

RESUMO

Many polypeptides form stable, helical secondary structures enabling the formation of lyotropic liquid crystalline (LLC) phases. Contrary to the well-studied polyglutamate, their counterparts based on polyaspartates exhibit a much lower helix inversion barrier. Therefore, the helix sense is not solely dictated by the chirality of the amino acid used, but additionally by the nature and conformation of the polymer sidechain. In this work, polymers responsive to irradiation with visible light are designed achieving conformational transitions from helix-to-coil and helix-to-helix. The synthesis and the application as LLC mesogens of several (co-)polyaspartates bearing ortho-fluorinated azobenzene (FAB) as a photochromic group are presented. Many of the obtained polymers undergo changes in their secondary structure upon E-Z-isomerization of the FAB-containing sidechain. Of special interest are copolymers that exhibit photo-responsive helix inversion without loss of their helical secondary structure. These copolymers form stable LLC phases in helicogenic solvents, where the effect of photo-switching on the macroscopic behavior is studied by NMR spectroscopy. Especially, the irradiation of the different LLC phases of the helix inversion polymers displays a change in the LLC order experienced by the solvent. These peculiar properties are promising for future applications as photo-responsive alignment media for structure elucidation in NMR.

2.
Polymers (Basel) ; 9(10)2017 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965794

RESUMO

The design of artificially generated channels featuring distinct remote-switchable functionalities is of critical importance for separation, transport control, and water filtration applications. Here, we focus on the preparation of block copolymers (BCPs) consisting of polystyrene-block-poly(2-hydroxyethyl methacrylate) (PS-b-PHEMA) having molar masses in the range of 91 to 124 kg mol-1 with a PHEMA content of 13 to 21 mol %. The BCPs can be conveniently functionalized with redox-active ferrocene moieties by a postmodification protocol for the hydrophilic PHEMA segments. Up to 66 mol % of the hydroxyl functionalities can be efficiently modified with the reversibly redox-responsive units. For the first time, the ferrocene-containing BCPs are shown to form nanoporous integral asymmetric membranes by self-assembly and application of the non-solvent-induced phase separation (SNIPS) process. Open porous structures are evidenced by scanning electron microscopy (SEM) and water flux measurements, while efficient redox-switching capabilities are investigated after chemical oxidation of the ferrocene moieties. As a result, the porous membranes reveal a tremendously increased polarity after oxidation as reflected by contact angle measurements. Additionally, the initial water flux of the ferrocene-containing membranes decreased after oxidizing the ferrocene moieties because of oxidation-induced pore swelling of the membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...