Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e27260, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38562493

RESUMO

Volterra integro-partial differential equations with weakly singular kernels (VIPDEWSK) are utilized to model diverse physical phenomena. A matrix collocation method is proposed for determining the approximate solution of this functional equation category. The method employs shifted Chebyshev polynomials of the fifth kind (SCPFK) to construct two-dimensional pseudo-operational matrices of integration, avoiding the need for explicit integration and thereby speeding up computations. Error bounds are examined in a Chebyshev-weighted space, providing insights into approximation accuracy. The approach is applied to several experimental examples, and the results are compared with those obtained using the Bernoulli wavelets and Legendre wavelets methods.

2.
Math Biosci Eng ; 20(11): 20025-20049, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-38052635

RESUMO

The present study discussed a model to describe the SARS-CoV-2 viral kinetics in the presence of saturated antiviral responses. A discrete-time delay was introduced due to the time required for uninfected epithelial cells to activate a suitable antiviral response by generating immune cytokines and chemokines. We examined the system's stability at each equilibrium point. A threshold value was obtained for which the system switched from stability to instability via a Hopf bifurcation. The length of the time delay has been computed, for which the system has preserved its stability. Numerical results show that the system was stable for the faster antiviral responses of epithelial cells to the virus concentration, i.e., quick antiviral responses stabilized patients' bodies by neutralizing the virus. However, if the antiviral response of epithelial cells to the virus increased, the system became unstable, and the virus occupied the whole body, which caused patients' deaths.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação por Computador , Antivirais
3.
Adv Differ Equ ; 2021(1): 473, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721555

RESUMO

In this study, we discuss a cancer model considering discrete time-delay in tumor-immune interaction and stimulation processes. This study aims to analyze and observe the dynamics of the model along with variation of vital parameters and the delay effect on anti-tumor immune responses. We obtain sufficient conditions for the existence of equilibrium points and their stability. Existence of Hopf bifurcation at co-axial equilibrium is investigated. The stability of bifurcating periodic solutions is discussed, and the time length for which the solutions preserve the stability is estimated. Furthermore, we have derived the conditions for the direction of bifurcating periodic solutions. Theoretically, it was observed that the system undergoes different states if we vary the system's parameters. Some numerical simulations are presented to verify the obtained mathematical results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...