Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 25(31): 31190-31204, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30191525

RESUMO

Eutrophication of an under-ice river-lake system in Canada has been modeled using the Water Quality Analysis Simulation Program (WASP7). The model was used to assess the potential effect on water quality of increasing inter-basin transfer of water from an upstream reservoir into the Qu'Appelle River system. Although water is currently transferred, the need for increased transfer is a possibility under future water management scenarios to meet water demands in the region. Output from the model indicated that flow augmentation could decrease total ammonia and orthophosphate concentrations especially at Buffalo Pound Lake throughout the year. This is because the water being transferred has lower concentrations of these nutrients than the Qu'Appelle River system, although there is complex interplay between the more dilute chemistry, and the potential to increase loads by increasing flows. A global sensitivity analysis indicated that the model output for the lake component was more sensitive to input parameters than was the model output of the river component. Sensitive parameters included dissolved organic nitrogen mineralization rate, phytoplankton nitrogen to carbon ratio, phosphorus-to-carbon ratio, maximum phytoplankton growth rate, and phytoplankton death rate. Parameter sensitivities on output variables for the lake component were similar for both summer (open water) and winter (ice-covered), whereas those for the river component were different. The complex interplay of water quality, ice behaviors, and hydrodynamics of the chained river-lake system was all coupled in WASP7. Mean absolute error varied from 0.03-0.08 NH4-N/L for ammonium to 0.5 to1.7 mg/L for oxygen, and 0.04-0.13 NO3-N/L for nitrate.


Assuntos
Eutrofização , Lagos , Modelos Teóricos , Rios , Qualidade da Água , Compostos de Amônio/análise , Canadá , Carbono/análise , Monitoramento Ambiental , Camada de Gelo , Nitratos/análise , Nitrogênio/análise , Oxigênio/análise , Fósforo/análise , Fitoplâncton/crescimento & desenvolvimento , Estações do Ano , Poluentes Químicos da Água/análise
2.
J Dent (Shiraz) ; 17(4): 354-360, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27942552

RESUMO

STATEMENT OF THE PROBLEM: Oral candidiasis is the most common opportunistic infection affecting the human oral cavity. Photodynamic therapy, as one of its proposed treatment modalities, needs a distinct dye for achieving the best effect. PURPOSE: The purpose of this study was to evaluate photosensitization effects of four distinct dyes on standard suspension of Candida albicans (C. albicans) and Candida dubliniensis (C. dubliniensis) and biofilm of C. albicans considering the obtained optimum dye concentration and duration of laser irradiation. MATERIALS AND METHOD: In this in vitro study, colony forming units (CFU) of two sets of four groups of Laser plus Dye (L+D+), Dye (L-D+), Laser (L+D-) and No Laser, No Dye (L-D-) were assessed individually with different methylene blue concentrations and laser irradiation period. The photodynamic therapy effect on standard suspension of Candida species (using methylene blue, aniline blue, malachite green and crystal violet) were studied based on the obtained results. Similar investigation was performed on biofilm of C. albicans using the spectral absorbance. Data were imported to SPSS and assessed by statistical tests of analysis of variance (ANOVA) and Tukey test (α= 0.05). RESULTS: CFU among the different dye concentration and irradiation time decrease in dose- and time-dependent manner (p> 0.05), all of which were significantly lower than the control groups (p< 0.05). Among the examined photosensitizers, there was no statistically significant difference, (p> 0.05) though all of them were significantly decrease CFU compared with the control groups (p< 0.05). In L+D- and L+D+ groups, biofilm was significantly destroyed more than that of L-D- (p< 0.05). CONCLUSION: Photodynamic therapy might be used as an effective procedure to treat Candida associated mucocutaneous diseases and killing biofilm in the infected surfaces such as dentures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...