Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 197: 110796, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37037135

RESUMO

In this study, ion recombination correction factor (kS) and beam quality conversion factor ( [Formula: see text] ) values were extracted following the recommendations of the TRS-398 and TG-51 dosimetry protocols for widely used cylindrical ionization chambers for high energy photon beam dosimetry to quantify the agreement between the instructions for these two protocols for absolute dosimetry inside water. Four different types of cylindrical ionization chambers comprising Farmer (TM30013), Semiflex 0.125 cm3 (TM31010), Semiflex 0.3 cm3 (TM31013), and PinPoint (TM31016) were considered, and kS and [Formula: see text] values were determined at photon energies of 6 MV and 15 MV. The maximum difference between the measured kS values according to the instructions in the TRS-398 and TG-51 protocols was 0.03%. The kS data measured with both protocols agreed well with those measured by using the Jaffe-plot approach, where the maximum difference was about 0.33%. The observed differences between the [Formula: see text] factors measured by using the TRS-398 and TG-51 dosimetry protocols at photon energies of 6 MV and 15 MV were 0.37% and 0.55%, respectively. The [Formula: see text] values measured using the TG-51 dosimetry protocols were slightly closer to those measured by a reference ionization chamber dosimeter. We conclude that the maximum differences were about 0.4% and 0.6% in the absorbed dose measurements according to the TRS-398 and TG-51 instructions at photon energies of 6 MV and 15 MV, respectively. The type of ionization chamber employed also affected the differences, where the maximum and minimum dose differences were found using the Farmer and PinPoint chambers, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...