Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Joint Surg Am ; 103(17): 1620-1627, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848100

RESUMO

BACKGROUND: Improved knowledge of in vivo function of the collateral ligaments is essential for enhancing rehabilitation and guiding surgical reconstruction as well as soft-tissue balancing in total knee arthroplasty. The aim of this study was to quantify in vivo elongation patterns of the collateral ligaments throughout complete cycles of functional activities. METHODS: Knee kinematics were measured using radiographic images captured with a mobile fluoroscope while healthy subjects performed level walking, downhill walking, and stair descent. The registered in vivo tibiofemoral kinematics were then used to drive subject-specific multibody knee models to track collateral ligament elongation. RESULTS: The elongation patterns of the medial collateral ligament varied distinctly among its bundles, ranging from lengthening of the anterior fibers to shortening of the posterior bundle with increases in the knee flexion angle. The elongation patterns of the lateral collateral ligament varied considerably among subjects. It showed an average 4% shortening with increasing flexion until 60% to 70% of the gait cycle, and then recovered during the terminal-swing phase until reaching its reference length (defined at heel strike). CONCLUSIONS: The observed nonuniform elongation of the medial collateral ligament bundles suggests that single-bundle reconstruction techniques may not fully restore healthy ligament function. Moreover, the observed ligament elongation patterns indicate greater varus than valgus laxity in the loaded knee. CLINICAL RELEVANCE: Through providing key knowledge about the in vivo elongation patterns of the collateral ligaments throughout complete cycles of functional activities, this study offers in vivo evidence for benchmarking ligament reconstruction and soft-tissue balancing in total knee arthroplasty.


Assuntos
Artroplastia do Joelho/reabilitação , Ligamentos Colaterais/fisiologia , Articulação do Joelho/fisiologia , Benchmarking , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Adulto Jovem
2.
Ann Biomed Eng ; 49(1): 7-28, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33025317

RESUMO

The critical clinical and scientific insights achieved through knowledge of in vivo musculoskeletal soft tissue strains has motivated the development of relevant measurement techniques. This review provides a comprehensive summary of the key findings, limitations, and clinical impacts of these techniques to quantify musculoskeletal soft tissue strains during dynamic movements. Current technologies generally leverage three techniques to quantify in vivo strain patterns, including implantable strain sensors, virtual fibre elongation, and ultrasound. (1) Implantable strain sensors enable direct measurements of tissue strains with high accuracy and minimal artefact, but are highly invasive and current designs are not clinically viable. (2) The virtual fibre elongation method tracks the relative displacement of tissue attachments to measure strains in both deep and superficial tissues. However, the associated imaging techniques often require exposure to radiation, limit the activities that can be performed, and only quantify bone-to-bone tissue strains. (3) Ultrasound methods enable safe and non-invasive imaging of soft tissue deformation. However, ultrasound can only image superficial tissues, and measurements are confounded by out-of-plane tissue motion. Finally, all in vivo strain measurement methods are limited in their ability to establish the slack length of musculoskeletal soft tissue structures. Despite the many challenges and limitations of these measurement techniques, knowledge of in vivo soft tissue strain has led to improved clinical treatments for many musculoskeletal pathologies including anterior cruciate ligament reconstruction, Achilles tendon repair, and total knee replacement. This review provides a comprehensive understanding of these measurement techniques and identifies the key features of in vivo strain measurement that can facilitate innovative personalized sports medicine treatment.


Assuntos
Ligamentos/lesões , Ligamentos/fisiopatologia , Traumatismos dos Tendões/fisiopatologia , Animais , Fenômenos Biomecânicos , Humanos , Ligamentos/diagnóstico por imagem , Traumatismos dos Tendões/diagnóstico por imagem , Tendões/diagnóstico por imagem , Tendões/fisiopatologia , Ultrassonografia
3.
Artigo em Inglês | MEDLINE | ID: mdl-32728445

RESUMO

BACKGROUND: Symmetry during lifting is considered critical for allowing balanced power production and avoidance of injury. This investigation assessed the influence of elevating the heels on bilateral lower limb symmetry during loaded (50% of body weight) high-bar back squats. METHODS: Ten novice (mass 67.6 ± 12.4 kg, height 1.73 ± 0.10 m) and ten regular weight trainers (mass 66.0 ± 10.7 kg, height 1.71 ± 0.09 m) were assessed while standing on both the flat level floor and on an inclined board. Data collection used infra-red motion capture procedures and two force platforms to record bilateral vertical ground reaction force (GRFvert) and ankle, knee and hip joint kinematic and kinetic data. Paired t-tests and statistical parametric mapping (SPM1D) procedures were used to assess differences in discrete and continuous bilateral symmetry data across conditions. RESULTS: Although discrete joint kinematic and joint moment symmetry data were largely unaffected by raising the heels, the regular weight trainers presented greater bilateral asymmetry in these data than the novices. The one significant finding in these discrete data showed that raising the heels significantly reduced maximum knee extension moment asymmetry (P = 0.02), but in the novice group only. Time-series analyses indicated significant bilateral asymmetries in both GRFvert and knee extension moments mid-way though the eccentric phase for the novice group, with the latter unaffected by heel lift condition. There were no significant bilateral asymmetries in time series data within the regular weight training group. CONCLUSIONS: This investigation highlights that although a degree of bilateral lower limb asymmetry is common in individuals performing back squats, the degree of this symmetry is largely unaffected by raising the heels. Differences in results for discrete and time-series symmetry analyses also highlight a key issue associated with relying solely on discrete data techniques to assess bilateral symmetry during tasks such as the back squat.

4.
Ann Biomed Eng ; 48(4): 1396-1406, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31974870

RESUMO

This study aimed to quantify the elongation patterns of the collateral ligaments following TKA during functional activities of daily living. Using mobile video-fluoroscopy to capture radiographic images of the knee in a group of six patients, each with an ultra-congruent knee implant, tibiofemoral kinematics were reconstructed throughout complete cycles of level gait, downhill walking, stair descent, and squat activities. Kinematic data were then used to drive subject-specific multibody knee models to estimate length-change patterns of the LCL as well as three bundles of the MCL. In addition, a sensitivity analysis examined the role of the attachment site in the elongation patterns. Our data indicate a slackening of the LCL but non-uniform length-change patterns across the MCL bundles (ranging from lengthening of the anterior fibers to shortening of the posterior fibers) with increasing knee flexion angle. Near-isometric behavior of the intermediate fibers was observed throughout the entire cycle of the studied activities. These length-change patterns were found to be largely consistent across different activities. Importantly, length-change patterns were critically sensitive to the location of the femoral attachment points relative to the femoral component. Thus, in TKA with ultra-congruent implants, implantation of the femoral component may critically govern post-operative ligament function.


Assuntos
Atividades Cotidianas , Artroplastia do Joelho , Ligamentos Colaterais/fisiologia , Idoso , Fenômenos Biomecânicos , Fêmur/fisiologia , Humanos , Joelho/diagnóstico por imagem , Joelho/fisiologia , Prótese do Joelho , Pessoa de Meia-Idade , Movimento/fisiologia , Tíbia/fisiologia
5.
Muscles Ligaments Tendons J ; 7(1): 125-135, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717620

RESUMO

BACKGROUND: The goal of this review is to summarise and discuss the reported influence of muscle-tendon forces on anterior cruciate ligament (ACL) loading during the jump-landing task by means of biomechanical analyses of the healthy knee. METHODS: A systematic review of the literature was conducted using different combinations of the terms "knee", "ligament", "load", "tension ", "length", "strain", "elongation" and "lengthening". 26 original articles (n=16 in vitro studies; n=10 in situ studies) were identified which complied with all inclusion/exclusion criteria. RESULTS: No apparent trend was found between ACL loading and the ratio between hamstrings and quadriceps muscle-tendon forces prior to or during landing. Four in vitro studies reported reduced peak ACL strain if the quadriceps force was increased; while one in vitro study and one in situ study reported reduced ACL loading if the hamstrings force was increased. A meta-analysis of the reported results was not possible because of the heterogeneity of the confounding factors. CONCLUSION: The reported results suggest that increased hip flexion during landing may help in reducing ACL strain by lengthening the hamstrings, and thus increasing its passive resistance to stretch. Furthermore, it appears that increased tensile stiffness of the quadriceps may help in stabilising the knee joint during landing, and thus protecting the passive soft-tissue structures from overloading. LEVEL OF EVIDENCE: Ib.

6.
PLoS One ; 11(11): e0167106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27880849

RESUMO

BACKGROUND: The posterior cruciate ligament (PCL) is the strongest ligament of the knee, serving as one of the major passive stabilizers of the tibio-femoral joint. However, despite a number of experimental and modelling approaches to understand the kinematics and kinetics of the ligament, the normal loading conditions of the PCL and its functional bundles are still controversially discussed. OBJECTIVES: This study aimed to generate science-based evidence for understanding the functional loading of the PCL, including the anterolateral and posteromedial bundles, in the healthy knee joint through systematic review and statistical analysis of the literature. DATA SOURCES: MEDLINE, EMBASE and CENTRAL. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Databases were searched for articles containing any numerical strain or force data on the healthy PCL and its functional bundles. Studied activities were as follows: passive flexion, flexion under 100N and 134N posterior tibial load, walking, stair ascent and descent, body-weight squatting and forward lunge. METHOD: Statistical analysis was performed on the reported load data, which was weighted according to the number of knees tested to extract average strain and force trends of the PCL and identify deviations from the norms. RESULTS: From the 3577 articles retrieved by the initial electronic search, only 66 met all inclusion criteria. The results obtained by aggregating data reported in the eligible studies indicate that the loading patterns of the PCL vary with activity type, knee flexion angle, but importantly also the technique used for assessment. Moreover, different fibres of the PCL exhibit different strain patterns during knee flexion, with higher strain magnitudes reported in the anterolateral bundle. While during passive flexion the posteromedial bundle is either lax or very slightly elongated, it experiences higher strain levels during forward lunge and has a synergetic relationship with the anterolateral bundle. The strain patterns obtained for virtual fibres that connect the origin and insertion of the bundles in a straight line show similar trends to those of the real bundles but with different magnitudes. CONCLUSION: This review represents what is now the best available understanding of the biomechanics of the PCL, and may help to improve programs for injury prevention, diagnosis methods as well as reconstruction and rehabilitation techniques.


Assuntos
Articulação do Joelho/fisiologia , Ligamento Cruzado Posterior/fisiologia , Humanos , Articulação do Joelho/anatomia & histologia , Ligamento Cruzado Posterior/anatomia & histologia , Suporte de Carga/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...