Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 411: 129-37, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24054447

RESUMO

X-ray diffraction and UV-vis spectroscopy were used for the investigation of ion exchange reaction kinetics of nitrates with acetate (Ac), chloro acetate (ClAc), dichloro acetate (dClAc) and trichloro acetate (tClAc) anions, using zinc nickel hydroxy nitrate (ZnNiHN) as the exchange precursor. The exchange reactions conducted at 24, 30, 40 and 50°C revealed that rate constants were inversely related to the calculated anion electronic spatial extent (ESE), while a direct relationship between rate constants and the average oxygen charges was observed. Temporal solid phase structural transformations were shown to be affected by the nature of the guest anions. The amount of nitrates released into solution has been shown to decrease as the guest anions became more chlorinated. Use of isoconversional approach revealed that activation energies changed significantly with α during dClAc intercalation than for the other anions. The topotactic intercalation of the guest anions, except dClAc, followed the Avrami-Erofe'ev kinetic model for the entire reaction progress.


Assuntos
Acetatos/química , Ânions , Cloro/química , Compostos de Zinco/química , Cinética , Estrutura Molecular , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Water Sci Technol ; 65(5): 940-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22339031

RESUMO

Atrazine removal from water by treated banana peels was studied. The effect of pH, contact time, initial atrazine concentration, and temperature were investigated. Batch experiments demonstrated that 15 g L(-1) adsorbent dosage removed 90-99% of atrazine from 1-150 ppm aqueous solutions. The removal was both pH and temperature dependent with the most atrazine removed between pH 7 and 8.2 and increased with increasing temperature. Equilibrium data fitted well to the Langmuir and Redlich-Peterson models in the concentration and temperature ranges investigated, with a maximum adsorption capacity of 14 mg g(-1). Simple mass transfer models were applied to the experimental data to examine the adsorption mechanism and it was found that both external mass transfer and intraparticle diffusion played important roles in the adsorption mechanisms. The enthalpy of atrazine adsorption was evaluated to be 67.8 ± 6.3 kJ mol(-l) with a Gibbs free energy of -5.7 ± 1.2 kJ mol(-1).


Assuntos
Atrazina/isolamento & purificação , Musa/química , Temperatura , Resíduos/análise , Adsorção , Biodegradação Ambiental , Difusão , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos
3.
J Colloid Interface Sci ; 363(1): 92-7, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21831395

RESUMO

The adsorption equilibrium, kinetics, and thermodynamics of removal of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solutions by a calcined Zn-Al layered double hydroxide incorporated with Zr(4+) were studied with respect to time, temperature, pH, and initial 2,4-D concentration. Zr(4+) incorporation into the LDH was used to enhance 2,4-D uptake by creating higher positive charges and surface/layer modification of the adsorbent. The LDH was capable of removing up to 98% of 2,4-D from 5 to 400 ppm aqueous at adsorbent dosages of 500 and 5000 mg L(-1). The adsorption was described by a Langmuir-type isotherm. The percentage 2,4-D removed was directly proportional to the adsorbent dosage and was optimized with 8% Zr(4+) ion content, relative to the total metals (Zr(4+)+Al(3+)+Zn(2+)). Selected mass transfer and kinetic models were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms of 2,4-D, and the kinetics followed a pseudo-second order kinetic model with an enthalpy, ΔH(ads) of -27.7±0.9 kJ mol(-1). Regeneration studies showed a 6% reduction in 2,4-D uptake capacity over six adsorption-desorption cycles when exposed to an analyte concentration of 100 ppm.


Assuntos
Ácido 2,4-Diclorofenoxiacético/isolamento & purificação , Alumínio/química , Hidróxidos/química , Zinco/química , Zircônio/química , Adsorção , Concentração de Íons de Hidrogênio , Hidróxidos/síntese química , Cinética , Membranas Artificiais , Termodinâmica
4.
J Phys Chem A ; 114(49): 12858-69, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21080715

RESUMO

Anion exchange reactions of nanodimensional layered metal hydroxide compounds are utilized to create materials with targeted physical and chemical properties and also as a means for controlled release of intercalated anions. The kinetics of this important class of reaction are generally characterized by model-based approaches. In this work, a different approach based on isothermal, isoconversional analysis was utilized to determine effective activation energies with respect to extent of reaction. Two different layered metal hydroxide materials were chosen for reaction with chloride anions, using a temperature range of 30-60 °C. The concentrations of anions released into solution and the changes in polycrystalline solid phases were evaluated using model-based (Avrami-Erofe'ev nucleation-growth model) and model-free (integral isoconversional) methods. The results demonstrate the utility of the isoconversional approach for identifying when fitting to a single model is not appropriate, particularly for characterizing the temperature dependence of the reaction kinetics.


Assuntos
Cobre/química , Hidróxidos/química , Nanopartículas Metálicas/química , Zinco/química , Ânions/química , Hidróxidos/síntese química , Cinética , Tamanho da Partícula , Temperatura
5.
J Nanosci Nanotechnol ; 8(4): 1927-36, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18572595

RESUMO

Organically-modified montmorillonite (MMT) clays have been prepared using ammonium salts containing quinoline, pyridine, benzene, and styrenic groups. The nanocomposites were prepared by melt blending and the formation of nanocomposites was characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermal stability and flammability were evaluated by thermogravimetric analysis (TGA) and cone calorimetry measurements, respectively. The presence of modified MMT at 5% loading resulted in significant improvement in thermal stability compared to the virgin polymer. Effective activation energies for mass loss were determined via a model-free isoconversional approach from TGA data obtained under N2 and under air. The additives served to raise the activation energy, with a more significant impact observed under pyrolysis conditions. The onset temperature of degradation and temperature of maximum decomposition rate are increased, while the peak heat release rate and mass loss rates are significantly reduced in the presence of three of the modified clays. No reduction in the total heat released is observed.


Assuntos
Bentonita/química , Cristalização/métodos , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Compostos Orgânicos/química , Poliestirenos/química , Simulação por Computador , Cinética , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Temperatura de Transição
6.
Inorg Chem ; 45(9): 3766-73, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16634612

RESUMO

Two hydroxy double salts (HDSs), zinc copper hydroxy acetate (ZCA) and zinc nickel hydroxy acetate (ZNA), and an analogous layered compound, zinc hydroxy acetate (ZHA), have been prepared by a coprecipitation method. The thermal degradation of these materials was characterized via thermogravimetric analysis (TGA), differential thermal analysis (DTA), and TGA coupled with Fourier transform infrared spectroscopy of gas-phase products, TGA-FTIR. Loss of physisorbed and interlayer H2O was observed between 50 and 150 degrees C for all compounds. Acetic acid, acetone, water, and CO2 were released at high temperatures with relative acetone yields found to be dependent on precursor identity, with very little formed from ZCA compared with ZHA and ZNA. Combined FTIR and XRD analysis of solid residues extracted at different points in the heating profile suggests that ketonization occurs via dissociative adsorption of acetic acid on ZnO surfaces. Nanometer-sized ZnO particles were formed from ZHA, showing slight preferential growth in the ZnO (002) lattice direction, while the presence of a second metal, Ni or Cu, served to retard ZnO crystallite growth at temperatures below 600 degrees C and eliminate preferential growth. ZCA leads to the formation of reduced copper species (metallic copper and Cu2O) when heated to 250 degrees C.

7.
Anal Chem ; 77(14): 4595-603, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16013878

RESUMO

Direct chemical sensing in liquid environments using polymer-guided shear horizontal surface acoustic wave sensor platforms on 36 degrees rotated Y-cut LiTaO3 is investigated. Design considerations for optimizing these devices for liquid-phase detection are systematically explored. Two different sensor geometries are experimentally and theoretically analyzed. Dual delay line devices are used with a reference line coated with poly (methyl methacrylate) (PMMA) and a sensing line coated with a chemically sensitive polymer, which acts as both a guiding layer and a sensing layer or with a PMMA waveguide and a chemically sensitive polymer. Results show the three-layer model provides higher sensitivity than the four-layer model. Contributions from mass loading and coating viscoelasticity changes to the sensor response are evaluated, taking into account the added mass, swelling, and plasticization. Chemically sensitive polymers are investigated in the detection of low concentrations (1-60 ppm) of toluene, ethylbenzene, and xylenes in water. A low-ppb level detection limit is estimated from the present experimental measurements. Sensor properties are investigated by varying the sensor geometries, coating thickness combinations, coating properties, and curing temperature for operation in liquid environments. Partition coefficients for polymer-aqueous analyte pairs are used to explain the observed trend in sensitivity for the polymers PMMA, poly(isobutylene), poly(epichlorohydrin), and poly(ethyl acrylate) used in this work.


Assuntos
Resinas Acrílicas/análise , Técnicas de Química Analítica/instrumentação , Epicloroidrina/análogos & derivados , Epicloroidrina/análise , Polienos/análise , Polímeros/análise , Polimetil Metacrilato/análise , Técnicas de Química Analítica/métodos , Sensibilidade e Especificidade
8.
J Phys Chem B ; 109(1): 66-73, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16850985

RESUMO

Nanocrystalline mixtures of Sn(II) and Sn(IV) oxide powders, potential gas sensor materials, are synthesized via a simple precipitation route using SnCl(2) as the precursor. Materials are characterized by powder X-ray diffraction, thermogravimetric analysis, UV-visible diffuse reflectance spectroscopy (DRS), and Fourier transform infrared spectroscopy. The ratio of Sn(II)/Sn(IV) in powders precipitated at room temperature, as well as the identity of the primary Sn(II) product (SnO or Sn(6)O(4)(OH)(4)), can be varied by adjusting aging time and washing procedures. The identity of the initial Sn(II) product influences the subsequent phase composition and degree of disorder in the tetragonal SnO(2) phase obtained following sintering in air. Analysis of the DRS absorption edge and long-wavelength (Urbach) absorption tail is used to determine the SnO(2) optical band gap and extent of disorder. SnO(2) obtained by heating the SnO/SnO(2) mixture at 600 or 800 degrees C has a smaller optical band gap and a broader Urbach tail than the analogous sample obtained from heating Sn(6)O(4)(OH)(4), indicating a more disordered material.


Assuntos
Nanopartículas/química , Compostos de Estanho/química , Cristalização , Pós/química , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
9.
J Phys Chem B ; 109(17): 8469-75, 2005 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16851994

RESUMO

(1)H NMR spectroscopy and powder X-ray diffraction have been used to explore the details of anion exchange reactions of two layered hydroxy double salts (HDSs), zinc copper hydroxy acetate (ZCA), nickel zinc hydroxy acetate (NZA), and a related layered material, zinc hydroxy acetate (ZHA), at room temperature (21-22 degrees C). Reactions that followed Avrami-Erofe'ev kinetics with respect to temporal profiles for acetate release, ZCA with butyrate (k = 1.7 x 10(-3) s(-1)), and octanoate (k = 0.79 x 10(-3) s(-1)) anions, as well as ZHA with octanoate (k = 2.6 x 10(-3) s(-1)), demonstrate that rate constants for acetate release are influenced by the exchange anion relative size as well as by the solid precursor structure/composition. The reaction of NZA with octanoate deviated from expected Avrami-Erofe'ev behavior, with evidence for an intermediate species in the solid phase that may influence the rate of acetate release into solution. The reaction of ZCA with formate anions exhibited a unique zeroth-order kinetics release of acetate, providing the possibility of developing tunable nanostructured anion release sources by use of variations in the size of the exchange species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...