Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Transl Med ; 14(627): eabg3684, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020407

RESUMO

Positron emission tomography (PET) ligands play an important role in the development of therapeutics by serving as target engagement or pharmacodynamic biomarkers. Here, we describe the discovery and translation of the PET tracer [11C]MK-6884 from rhesus monkeys to patients with Alzheimer's disease (AD). [3H]MK-6884/[11C]MK-6884 binds with high binding affinity and good selectivity to an allosteric site on M4 muscarinic cholinergic receptors (M4Rs) in vitro and shows a regional distribution in the brain consistent with M4R localization in vivo. The tracer demonstrates target engagement of positive allosteric modulators of the M4R (M4 PAMs) through competitive binding interactions. [11C]MK-6884 binding is enhanced in vitro by the orthosteric M4R agonist carbachol and indirectly in vivo by the acetylcholinesterase inhibitor donepezil in rhesus monkeys and healthy volunteers, consistent with its pharmacology as a highly cooperative M4 PAM. PET imaging of [11C]MK-6884 in patients with AD identified substantial regional differences quantified as nondisplaceable binding potential (BPND) of [11C]MK-6884. These results suggest that [11C]MK-6884 is a useful target engagement biomarker for M4 PAMs but may also act as a sensitive probe of neuropathological changes in the brains of patients with AD.


Assuntos
Doença de Alzheimer , Acetilcolinesterase , Doença de Alzheimer/diagnóstico por imagem , Animais , Humanos , Macaca mulatta , Tomografia por Emissão de Pósitrons/métodos , Receptores Muscarínicos
2.
EJNMMI Res ; 11(1): 49, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34046730

RESUMO

BACKGROUND: [18F]MK-6240 is a PET tracer with sub-nanomolar affinity for neurofibrillary tangles. Therefore, tau quantification is possible with [18F]MK-6240 PET/CT scans, and it can be used for assessment of Alzheimer's disease. However, long acquisition scans are required to provide fully quantitative estimates of pharmacokinetic parameters. Therefore, on the present study, dual-time-window (DTW) acquisitions was simulated to reduce PET/CT acquisition time, while taking into consideration perfusion changes and possible scanning protocol non-compliance. To that end, time activity curves (TACs) representing a 120-min acquisition (TAC120) were simulated using a two-tissue compartment model with metabolite corrected arterial input function from 90-min dynamic [18F]MK-6240 PET scans of three healthy control subjects and five subjects with mild cognitive impairment or Alzheimer's disease. Therefore, TACs corresponding to different levels of specific binding were generated and then various perfusion changes were simulated. Next, DTW acquisitions were simulated consisting of an acquisition starting at tracer injection, a break and a second acquisition starting at 90 min post-injection. Finally, non-compliance with the PET/CT scanning protocol were simulated to assess its impact on quantification. All TACs were quantified using reference Logan's distribution volume ratio (DVR) and standardized uptake value ratio (SUVR90) using the cerebellar cortex as reference region. RESULTS: It was found that DVR from a DTW protocol with a 60-min break between two 30-min dynamic scans closely approximates the DVR from the uninterrupted TAC120, with a regional bias smaller than 2.5%. Moreover, SUVR90 estimates were more susceptible (regional bias ≤ 19%) to changes in perfusion compared to DVR from a DTW TAC (regional bias ≤ 10%). Similarly, SUVR90 was affected by late-time scanning protocol delays reaching an increase of 8% for a 20-min delay, while DVR was not affected (regional bias < 1.5%) by DTW protocol non-compliance. CONCLUSIONS: Therefore, such DTW protocol has the potential to increase patient comfort and throughput without compromising quantitative accuracy and is more reliable against SUVR in terms of perfusion changes and protocol deviations, which could prove beneficial for drug effect assessment and patient follow-up using longitudinal [18F]MK-6240 PET imaging.

3.
Nature ; 589(7843): 542-547, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33238289

RESUMO

Positron emission tomography (PET) radioligands (radioactively labelled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncology targets1. Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands2, yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalysed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Methyl groups are among the most prevalent structural elements found in bioactive molecules, and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labelled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clinically used compounds [11C]UCB-J and [11C]PHNO. We further outline the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.


Assuntos
Técnicas de Química Sintética , Ligantes , Processos Fotoquímicos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/química , Alquilação , Radioisótopos de Carbono/química , Glipizida/análogos & derivados , Glipizida/química , Metilação , Oxirredução
4.
J Labelled Comp Radiopharm ; 64(4): 159-167, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33226657

RESUMO

The cathepsin K (CatK) enzyme is abundantly expressed in osteoclasts, and CatK inhibitors have been developed for the treatment of osteoporosis. In our effort to support discovery and clinical evaluations of a CatK inhibitor, we sought to discover a radioligand to determine target engagement of the enzyme by therapeutic candidates using positron emission tomography (PET). L-235, a potent and selective CatK inhibitor, was labeled with carbon-11. PET imaging studies recording baseline distribution of [11 C]L-235, and chase and blocking studies using the selective CatK inhibitor MK-0674 were performed in juvenile and adult nonhuman primates (NHP) and ovariectomized rabbits. Retention of the PET tracer in regions expected to be osteoclast-rich compared with osteoclast-poor regions was examined. Increased retention of the radioligand was observed in osteoclast-rich regions of juvenile rabbits and NHP but not in the adult monkey or adult ovariectomized rabbit. Target engagement of CatK was observed in blocking studies with MK-0674, and the radioligand retention was shown to be sensitive to the level of MK-0674 exposure. [11 C]L-235 can assess target engagement of CatK in bone only in juvenile animals. [11 C]L-235 may be a useful tool for guiding the discovery of CatK inhibitors.


Assuntos
Catepsina K/antagonistas & inibidores , Osteoporose/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Animais , Osso e Ossos/diagnóstico por imagem , Radioisótopos de Carbono/química , Inibidores de Cisteína Proteinase/química , Avaliação Pré-Clínica de Medicamentos , Feminino , Ligantes , Macaca mulatta , Ligação Proteica , Coelhos , Compostos Radiofarmacêuticos/efeitos adversos , Compostos Radiofarmacêuticos/química , Distribuição Tecidual
5.
Mol Imaging Biol ; 23(2): 250-259, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104972

RESUMO

PURPOSE: Programmed cell death-1 receptor (PD-1) and its ligand (PD-L1) are the targets for immunotherapy in many cancer types. Although PD-1 blockade has therapeutic effects, the efficacy differs between patients. Factors contributing to this variability are PD-L1 expression levels and immune cells present in tumors. However, it is not well understood how PD-1 expression in the tumor microenvironment impacts immunotherapy response. Thus, imaging of PD-1-expressing immune cells is of interest. This study aims to evaluate the biodistribution of Zirconium-89 (89Zr)-labeled pembrolizumab, a humanized IgG4 kappa monoclonal antibody targeting PD-1, in healthy cynomolgus monkeys as a translational model of tracking PD-1-positive immune cells. PROCEDURES: Pembrolizumab was conjugated with the tetrafluorophenol-N-succinyl desferal-Fe(III) ester (TFP-N-sucDf) and subsequently radiolabeled with 89Zr. Four cynomolgus monkeys with no previous exposure to humanized monoclonal antibodies received tracer only or tracer co-injected with pembrolizumab intravenously over 5 min. Thereafter, a static whole-body positron emission tomography (PET) scan was acquired with 10 min per bed position on days 0, 2, 5, and 7. Image-derived standardized uptake values (SUVmean) were quantified by region of interest (ROI) analysis. RESULTS: 89Zr-N-sucDf-pembrolizumab was synthesized with high radiochemical purity (> 99 %) and acceptable molar activity (> 7 MBq/nmol). In animals dosed with tracer only, 89Zr-N-sucDf-pembrolizumab distribution in lymphoid tissues such as mesenteric lymph nodes, spleen, and tonsils increased over time. Except for the liver, low radiotracer distribution was observed in all non-lymphoid tissue including the lung, muscle, brain, heart, and kidney. When a large excess of pembrolizumab was co-administered with a radiotracer, accumulation in the lymph nodes, spleen, and tonsils was reduced, suggestive of target-mediated accumulation. CONCLUSIONS: 89Zr-N-sucDf-pembrolizumab shows preferential uptake in the lymphoid tissues including the lymph nodes, spleen, and tonsils. 89Zr-N-sucDf-pembrolizumab may be useful in tracking the distribution of a subset of immune cells in non-human primates and humans. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02760225.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Receptor de Morte Celular Programada 1/metabolismo , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/farmacocinética , Feminino , Imunoterapia/métodos , Macaca fascicularis , Masculino , Modelos Animais , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Radioisótopos , Distribuição Tecidual , Zircônio
6.
Mol Imaging Biol ; 23(2): 241-249, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33098025

RESUMO

PURPOSE: In vivo imaging of programmed death ligand 1 (PD-L1) during immunotherapy could potentially monitor changing PD-L1 expression and PD-L1 expression heterogeneity within and across tumors. Some protein constructs can be used for same-day positron emission tomography (PET) imaging. Previously, we evaluated the PD-L1-targeting Affibody molecule [18F]AlF-NOTA-ZPD-L1_1 as a PET tracer in a mouse tumor model of human PD-L1 expression. In this study, we evaluated the affinity-matured Affibody molecule ZPD-L1_4, to determine if improved affinity for PD-L1 resulted in increased in vivo targeting of PD-L1. PROCEDURES: ZPD-L1_4 was conjugated with NOTA and radiolabeled with either [18F]AlF or 68Ga. [18F]AlF-NOTA-ZPD-L1_4 and [68Ga]NOTA-ZPD-L1_4 were evaluated in immunocompromised mice with LOX (PD-L1+) and SUDHL6 (PD-L1-) tumors with PET and ex vivo biodistribution measurements. In addition, whole-body PET studies were performed in rhesus monkeys to predict human biodistribution in a model with tracer binding to endogenous PD-L1, and to calculate absorbed radiation doses. RESULTS: Ex vivo biodistribution measurements showed that both tracers had > 25 fold higher accumulation in LOX tumors than SUDHL6 ([18F]AlF-NOTA-ZPD-L1_4: LOX: 8.7 ± 0.7 %ID/g (N = 4) SUDHL6: 0.2 ± 0.01 %ID/g (N = 6), [68Ga]NOTA-ZPD-L1_4: LOX: 15.8 ± 1.0 %ID/g (N = 6) SUDHL6: 0.6 ± 0.1 %ID/g (N = 6)), considerably higher than ZPD-L1_1. In rhesus monkeys, both PET tracers showed fast clearance through kidneys and low background signal in the liver ([18F]AlF-NOTA-ZPD-L1_4: 1.26 ± 0.13 SUV, [68Ga]NOTA-ZPD-L1_4: 1.11 ± 0.06 SUV). PD-L1-expressing lymph nodes were visible in PET images, indicating in vivo PD-L1 targeting. Dosimetry estimates suggest that both PET tracers can be used for repeated clinical studies, although high kidney accumulation may limit allowable radioactive doses. CONCLUSIONS: [18F]AlF-NOTA-ZPD-L1_4 and [68Ga]NOTA-ZPD-L1_4 are promising candidates for same-day clinical PD-L1 PET imaging, warranting clinical evaluation. The ability to use either [18F] or [68Ga] may expand access to clinical sites.


Assuntos
Anticorpos Monoclonais/farmacocinética , Antígeno B7-H1/metabolismo , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Radiometria/métodos , Compostos Radiofarmacêuticos/farmacocinética , Animais , Anticorpos Monoclonais/administração & dosagem , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Radioisótopos de Flúor , Radioisótopos de Gálio , Humanos , Imunoterapia/métodos , Macaca mulatta , Camundongos , Imagem Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Compostos Radiofarmacêuticos/administração & dosagem , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Imaging Biol ; 22(1): 173-180, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31111397

RESUMO

PURPOSE: [18F]MK-6240 is a selective, high-affinity positron emission tomography tracer for imaging neurofibrillary tangles, a key pathological signature that correlates with cognitive decline in Alzheimer disease. This report provides safety information from preclinical toxicology studies and first-in-human whole-body biodistribution and dosimetry studies of [18F]MK-6240 for its potential application in human brain imaging studies. PROCEDURES: MK-6240 was administered intravenously (IV) in a 7-day rat toxicity study at × 50, × 100, and × 1000 dose margins relative to projected highest clinical dose of 0.333 µg/kg. The IV formulation of MK-6240 for clinical use and the formulation used in the 7-day rat toxicity study was tested for hemolysis potential in human and Wistar rat whole blood. Sequential whole-body positron emission tomography scans were performed in three healthy young subjects after IV bolus injection of 180 ± 0.3 MBq [18F]MK-6240 to characterize organ biodistribution and estimate whole-body radiation exposure (effective dose). RESULTS: MK-6240 administered IV in a 7-day rat toxicity study did not show any test article-related changes. The no-observed-adverse-effect level in rats was ≥ 333 µg/kg/day which provides a margin 1000-fold over an anticipated maximum clinical dose of 0.333 µg/kg. Additionally, the MK-6240 formulation was not hemolytic in human or Wistar rat blood. [18F]MK-6240 activity was widely distributed to the brain and the rest of the body, with organ absorbed doses largest for the gall bladder (202 µGy/MBq). The average (±SD) effective dose was 29.4 ± 0.6 µSv/MBq, which is in the typical range for F-18 radiolabeled ligands. CONCLUSIONS: Microdoses of [18F]MK-6240 are safe for clinical positron emission tomography imaging studies. Single IV administration of 185 MBq (5 mCi) [18F]MK-6240 is anticipated to result in a total human effective dose of 5.4 mSv and thus allows multiple positron emission tomography scans of the same subject per year.


Assuntos
Doença de Alzheimer/patologia , Radioisótopos de Flúor/farmacocinética , Isoquinolinas/farmacocinética , Emaranhados Neurofibrilares/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radiometria/métodos , Imagem Corporal Total/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Animais , Feminino , Voluntários Saudáveis , Humanos , Masculino , Emaranhados Neurofibrilares/metabolismo , Segurança do Paciente , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Wistar , Distribuição Tecidual
9.
J Nucl Med ; 60(1): 107-114, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29880509

RESUMO

18F-MK-6240 (18F-labeled 6-(fluoro)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine) is a highly selective, subnanomolar-affinity PET tracer for imaging neurofibrillary tangles (NFTs). Plasma kinetics, brain uptake, and preliminary quantitative analysis of 18F-MK-6240 in healthy elderly (HE) subjects, subjects with clinically probable Alzheimer disease (AD), and subjects with amnestic mild cognitive impairment were characterized in a study that is, to our knowledge, the first to be performed on humans. Methods: Dynamic PET scans of up to 150 min were performed on 4 cognitively normal HE subjects, 4 AD subjects, and 2 amnestic mild cognitive impairment subjects after a bolus injection of 152-169 MBq of 18F-MK-6240 to evaluate tracer kinetics and distribution in brain. Regional SUV ratio (SUVR) and distribution volume ratio were determined using the cerebellar cortex as a reference region. Total distribution volume was assessed by compartmental modeling using radiometabolite-corrected input function in a subgroup of 6 subjects. Results:18F-MK-6240 had rapid brain uptake with a peak SUV of 3-5, followed by a uniformly quick washout from all brain regions in HE subjects; slower clearance was observed in regions commonly associated with NFT deposition in AD subjects. In AD subjects, SUVR between 60 and 90 min after injection was high (approximately 2-4) in regions associated with NFT deposition, whereas in HE subjects, SUVR was approximately 1 across all brain regions, suggesting high tracer selectivity for binding NFTs in vivo. 18F-MK-6240 total distribution volume was approximately 2- to 3-fold higher in neocortical and medial temporal brain regions of AD subjects than in HE subjects and stabilized by 60 min in both groups. Distribution volume ratio estimated by the Logan reference tissue model or compartmental modeling correlated well (R2 > 0.9) to SUVR from 60 to 90 min for AD subjects. Conclusion:18F-MK-6240 exhibited favorable kinetics and high binding levels to brain regions with a plausible pattern for NFT deposition in AD subjects. In comparison, negligible tracer binding was observed in HE subjects. This pilot study suggests that simplified ratio methods such as SUVR can be used to quantify NFT binding. These results support further clinical development of 18F-MK-6240 for potential application in longitudinal studies.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/patologia , Radioisótopos de Flúor , Isoquinolinas/metabolismo , Emaranhados Neurofibrilares/metabolismo , Tomografia por Emissão de Pósitrons , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Isoquinolinas/sangue , Cinética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Traçadores Radioativos
10.
J Nucl Med ; 58(11): 1852-1857, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28588151

RESUMO

Programmed death ligand 1 (PD-L1) is an immune regulatory ligand that binds to the T-cell immune check point programmed death 1. Tumor expression of PD-L1 is correlated with immune suppression and poor prognosis. It is also correlated with therapeutic efficacy of programmed death 1 and PD-L1 inhibitors. In vivo imaging may enable real-time follow-up of changing PD-L1 expression and heterogeneity evaluation of PD-L1 expression across tumors in the same subject. We have radiolabeled the PD-L1-binding Affibody molecule NOTA-ZPD-L1_1 with 18F and evaluated its in vitro and in vivo binding affinity, targeting, and specificity. Methods: The affinity of the PD-L1-binding Affibody ligand ZPD-L1_1 was evaluated by surface plasmon resonance. Labeling was accomplished by maleimide coupling of NOTA to a unique cysteine residue and chelation of 18F-AlF. In vivo studies were performed in PD-L1-positive, PD-L1-negative, and mixed tumor-bearing severe combined immunodeficiency mice. Tracer was injected via the tail vein, and dynamic PET scans were acquired for 90 min, followed by γ-counting biodistribution. Immunohistochemical staining with an antibody specific for anti-PD-L1 (22C3) was used to evaluate the tumor distribution of PD-L1. Immunohistochemistry results were then compared with ex vivo autoradiographic images obtained from adjacent tissue sections. Results: NOTA-ZPD-L1_1 was labeled, with a radiochemical yield of 15.1% ± 5.6%, radiochemical purity of 96.7% ± 2.0%, and specific activity of 14.6 ± 6.5 GBq/µmol. Surface plasmon resonance showed a NOTA-conjugated ligand binding affinity of 1 nM. PET imaging demonstrated rapid uptake of tracer in the PD-L1-positive tumor, whereas the PD-L1-negative control tumor showed little tracer retention. Tracer clearance from most organs and blood was quick, with biodistribution showing prominent kidney retention, low liver uptake, and a significant difference between PD-L1-positive (percentage injected dose per gram [%ID/g] = 2.56 ± 0.33) and -negative (%ID/g = 0.32 ± 0.05) tumors (P = 0.0006). Ex vivo autoradiography showed excellent spatial correlation with immunohistochemistry in mixed tumors. Conclusion: Our results show that Affibody ligands can be effective at targeting tumor PD-L1 in vivo, with good specificity and rapid clearance. Future studies will explore methods to reduce kidney activity retention and further increase tumor uptake.


Assuntos
Antígeno B7-H1/metabolismo , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Marcadores de Afinidade , Animais , Anticorpos Monoclonais , Autorradiografia , Feminino , Radioisótopos de Flúor/farmacocinética , Humanos , Imuno-Histoquímica , Marcação por Isótopo/métodos , Masculino , Camundongos SCID , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Compostos Organometálicos , Compostos Radiofarmacêuticos/farmacocinética , Ressonância de Plasmônio de Superfície , Distribuição Tecidual
11.
J Labelled Comp Radiopharm ; 60(5): 263-269, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28185305

RESUMO

Fluorine-18-labelled 6-(fluoro)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18 F]MK-6240) is a novel potent and selective positron emission tomography (PET) radiopharmaceutical for detecting human neurofibrillary tangles, which are made up of aggregated tau protein. Herein, we report the fully automated 2-step radiosynthesis of [18 F]MK-6240 using a commercially available radiosynthesis module, GE Healthcare TRACERlab FXFN . Nucleophilic fluorination of the 5-diBoc-6-nitro precursor with potassium cryptand [18 F]fluoride (K[18 F]/K222 ) was performed by conventional heating, followed by acid deprotection and semipreparative high-performance liquid chromatography under isocratic conditions. The isolated product was diluted with formulation solution and sterile filtered under Current Good Manufacturing Practices, and quality control procedures were established to validate this radiopharmaceutical for human use. At the end of synthesis, 6.3 to 9.3 GBq (170-250 mCi) of [18 F]MK-6240 was formulated and ready for injection, in an uncorrected radiochemical yield of 7.5% ± 1.9% (relative to starting [18 F]fluoride) with a specific activity of 222 ± 67 GBq/µmol (6.0 ± 1.8 Ci/µmol) at the end of synthesis (90 minutes; n = 3). [18 F]MK-6240 was successfully validated for human PET studies meeting all Food and Drug Administration and United States Pharmacopeia requirements for a PET radiopharmaceutical. The present method can be easily adopted for use with other radiofluorination modules for widespread clinical research use.


Assuntos
Radioisótopos de Flúor , Isoquinolinas/química , Emaranhados Neurofibrilares/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos/química , Halogenação , Humanos , Isoquinolinas/síntese química , Controle de Qualidade , Compostos Radiofarmacêuticos/síntese química
12.
J Nucl Med ; 57(10): 1599-1606, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27230925

RESUMO

A PET tracer is desired to help guide the discovery and development of disease-modifying therapeutics for neurodegenerative diseases characterized by neurofibrillary tangles (NFTs), the predominant tau pathology in Alzheimer disease (AD). We describe the preclinical characterization of the NFT PET tracer 18F-MK-6240. METHODS: In vitro binding studies were conducted with 3H-MK-6240 in tissue slices and homogenates from cognitively normal and AD human brain donors to evaluate tracer affinity and selectivity for NFTs. Immunohistochemistry for phosphorylated tau was performed on human brain slices for comparison with 3H-MK-6240 binding patterns on adjacent brain slices. PET studies were performed with 18F-MK-6240 in monkeys to evaluate tracer kinetics and distribution in the brain. 18F-MK-6240 monkey PET studies were conducted after dosing with unlabeled MK-6240 to evaluate tracer binding selectivity in vivo. RESULTS: The 3H-MK-6240 binding pattern was consistent with the distribution of phosphorylated tau in human AD brain slices. 3H-MK-6240 bound with high affinity to human AD brain cortex homogenates containing abundant NFTs but bound poorly to amyloid plaque-rich, NFT-poor AD brain homogenates. 3H-MK-6240 showed no displaceable binding in the subcortical regions of human AD brain slices and in the hippocampus/entorhinal cortex of non-AD human brain homogenates. In monkey PET studies, 18F-MK-6240 displayed rapid and homogeneous distribution in the brain. The 18F-MK-6240 volume of distribution stabilized rapidly, indicating favorable tracer kinetics. No displaceable binding was observed in self-block studies in rhesus monkeys, which do not natively express NFTs. Moderate defluorination was observed as skull uptake. CONCLUSION: 18F-MK-6240 is a promising PET tracer for the in vivo quantification of NFTs in AD patients.


Assuntos
Isoquinolinas/química , Emaranhados Neurofibrilares , Tomografia por Emissão de Pósitrons/métodos , Animais , Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Isoquinolinas/metabolismo , Macaca mulatta , Masculino , Traçadores Radioativos , Radioquímica
13.
J Med Chem ; 59(10): 4778-89, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27088900

RESUMO

Neurofibrillary tangles (NFTs) made up of aggregated tau protein have been identified as the pathologic hallmark of several neurodegenerative diseases including Alzheimer's disease. In vivo detection of NFTs using PET imaging represents a unique opportunity to develop a pharmacodynamic tool to accelerate the discovery of new disease modifying therapeutics targeting tau pathology. Herein, we present the discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine, 6 ([(18)F]-MK-6240), as a novel PET tracer for detecting NFTs. 6 exhibits high specificity and selectivity for binding to NFTs, with suitable physicochemical properties and in vivo pharmacokinetics.


Assuntos
Descoberta de Drogas , Isoquinolinas/química , Imagem Molecular , Emaranhados Neurofibrilares/patologia , Tomografia por Emissão de Pósitrons , Radioisótopos de Flúor/química , Humanos , Isoquinolinas/síntese química , Isoquinolinas/farmacocinética , Estrutura Molecular , Emaranhados Neurofibrilares/metabolismo
14.
Mol Imaging Biol ; 18(4): 579-87, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26596571

RESUMO

PURPOSE: A positron emission tomography (PET) tracer for the enzyme phosphodiesterase 10A (PDE10A) is desirable to guide the discovery and development of PDE10A inhibitors as potential therapeutics. The preclinical characterization of the PDE10A PET tracer [(11)C]MK-8193 is described. PROCEDURES: In vitro binding studies with [(3)H]MK-8193 were conducted in rat, monkey, and human brain tissue. PET studies with [(11)C]MK-8193 were conducted in rats and rhesus monkeys at baseline and following administration of a PDE10A inhibitor. RESULTS: [(3)H]MK-8193 is a high-affinity, selective PDE10A radioligand in rat, monkey, and human brain tissue. In vivo, [(11)C]MK-8193 displays rapid kinetics, low test-retest variability, and a large specific signal that is displaced by a structurally diverse PDE10A inhibitor, enabling the determination of pharmacokinetic/enzyme occupancy relationships. CONCLUSIONS: [(11)C]MK-8193 is a useful PET tracer for the preclinical characterization of PDE10A therapeutic candidates in rat and monkey. Further evaluation of [(11)C]MK-8193 in humans is warranted.


Assuntos
Compostos Heterocíclicos com 2 Anéis/química , Diester Fosfórico Hidrolases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono , Feminino , Compostos Heterocíclicos com 2 Anéis/sangue , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos Heterocíclicos com 2 Anéis/farmacocinética , Humanos , Macaca mulatta , Masculino , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Ratos , Fatores de Tempo
15.
Bioorg Med Chem Lett ; 26(1): 126-32, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26602277

RESUMO

Herein, we present the identification of a novel class of pyrazolopyrimidine phosphodiesterase 10A (PDE10A) inhibitors. Beginning with a lead molecule (1) identified through a fragment-based drug discovery (FBDD) effort, lead optimization was enabled by rational design, X-ray crystallography, metabolic and off-target profiling, and fragment scaffold-hopping. We highlight the discovery of PyP-1, a potent, highly selective, and orally bioavailable pyrazolopyrimidine inhibitor of PDE10A. PyP-1 exhibits sub-nanomolar potency (PDE10A Ki=0.23nM), excellent pharmacokinetic (PK) and physicochemical properties, and a clean off-target profile. It displays dose-dependent efficacy in numerous pharmacodynamic (PD) assays that measure potential for anti-psychotic activity and cognitive improvement. PyP-1 also has a clean preclinical profile with respect to cataleptic potential in rats, prolactin secretion, and weight gain, common adverse events associated with currently marketed therapeutics. Further, PyP-1 displays in vivo preclinical target engagement as measured by PET enzyme occupancy in concert with [(11)C]MK-8193, a novel PDE10A PET tracer.


Assuntos
Descoberta de Drogas , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Esquizofrenia/tratamento farmacológico , Animais , Cristalografia por Raios X , Cães , Relação Dose-Resposta a Droga , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Macaca mulatta , Modelos Moleculares , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Ratos , Ratos Wistar , Esquizofrenia/enzimologia , Relação Estrutura-Atividade
16.
Bioorg Med Chem Lett ; 25(21): 4893-4898, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26077491

RESUMO

Phosphodiesterase 10A (PDE10A) inhibition has recently been identified as a potential mechanism to treat multiple symptoms that manifest in schizophrenia. In order to facilitate preclinical development and support key proof-of-concept clinical trials of novel PDE10A inhibitors, it is critical to discover positron emission tomography (PET) tracers that enable plasma concentration/PDE10A occupancy relationships to be established across species with structurally diverse PDE10A inhibitors. In this Letter, we describe how a high-throughput screening hit was optimized to provide [(11)C]MK-8193 (8j), a PET tracer that supports the determination of plasma concentration/PDE10A occupancy relationships for structurally diverse series of PDE10A inhibitors in both rat and rhesus monkey.


Assuntos
Descoberta de Drogas , Compostos Heterocíclicos com 2 Anéis/química , Inibidores de Fosfodiesterase/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/metabolismo , Radioisótopos de Carbono , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Compostos Heterocíclicos com 2 Anéis/síntese química , Macaca mulatta , Modelos Moleculares , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/sangue , Ratos , Relação Estrutura-Atividade
17.
J Pharmacol Exp Ther ; 347(2): 478-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23975906

RESUMO

Calcitonin gene-related peptide (CGRP) is a potent neuropeptide whose agonist interaction with the CGRP receptor (CGRP-R) in the periphery promotes vasodilation, neurogenic inflammation and trigeminovascular sensory activation. This process is implicated in the cause of migraine headaches, and CGRP-R antagonists in clinical development have proven effective in treating migraine-related pain in humans. CGRP-R is expressed on blood vessel smooth muscle and sensory trigeminal neurons and fibers in the periphery as well as in the central nervous system. However, it is not clear what role the inhibition of central CGRP-R plays in migraine pain relief. To this end, the CGRP-R positron emission tomography (PET) tracer [(11)C]MK-4232 (2-[(8R)-8-(3,5-difluorophenyl)-6,8-[6-(11)C]dimethyl-10-oxo-6,9-diazaspiro[4.5]decan-9-yl]-N-[(2R)-2'-oxospiro[1,3-dihydroindene-2,3'-1H-pyrrolo[2,3-b]pyridine]-5-yl]acetamide) was discovered and developed for use in clinical PET studies. In rhesus monkeys and humans, [(11)C]MK-4232 displayed rapid brain uptake and a regional brain distribution consistent with the known distribution of CGRP-R. Monkey PET studies with [(11)C]MK-4232 after intravenous dosing with CGRP-R antagonists validated the ability of [(11)C]MK-4232 to detect changes in CGRP-R occupancy in proportion to drug plasma concentration. Application of [(11)C]MK-4232 in human PET studies revealed that telcagepant achieved only low receptor occupancy at an efficacious dose (140 mg PO). Therefore, it is unlikely that antagonism of central CGRP-R is required for migraine efficacy. However, it is not known whether high central CGRP-R antagonism may provide additional therapeutic benefit.


Assuntos
Acetanilidas/farmacocinética , Analgésicos/farmacocinética , Azepinas/farmacocinética , Encéfalo/metabolismo , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Imidazóis/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Compostos de Espiro/farmacocinética , Acetanilidas/química , Adulto , Analgésicos/uso terapêutico , Animais , Azepinas/uso terapêutico , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono , Feminino , Humanos , Imidazóis/uso terapêutico , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Estrutura Molecular , Ligação Proteica , Compostos Radiofarmacêuticos/química , Especificidade da Espécie , Compostos de Espiro/química , Distribuição Tecidual , Adulto Jovem
18.
Neuroimage ; 68: 1-10, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23238431

RESUMO

Antagonism of the central opioid receptor like-1 receptor (ORL1) has been implicated in cognition, and has been a focus of drug discovery efforts to ameliorate the cognitive deficits that remain during the stable treatment of schizophrenia with current antipsychotics. In order to facilitate dose selection for phase II clinical testing an ORL1-specific PET tracer was developed to determine drug plasma concentration versus occupancy relationships in order to ensure that the doses selected and the degree of target engagement were sufficient to ensure adequate proof of concept testing. MK-0911 is a selective, high affinity antagonist for the ORL1 receptor radiolabeled with high specific activity (18)F for positron emission tomography (PET) studies. Evaluation of [(18)F]MK-0911 in rhesus monkey PET studies showed a pattern of brain uptake which was consistent with the known distribution of ORL1. In vitro autoradiography with [(18)F]MK-0911 in rhesus monkey and human brain tissue slices showed a regional distribution that was consistent with in vivo imaging results in monkey. Pre-treatment of rhesus monkeys with high doses of structurally diverse ORL1 antagonists MK-0584, MK-0337, or MK-5757 achieved blockade of [(18)F]MK-0911 in all gray matter regions. Baseline PET studies with [(18)F]MK-0911 in healthy human subjects showed tracer distribution and kinetics similar to that observed in rhesus monkey. Quantification of [(18)F]MK-0911 uptake in repeat human baseline PET studies showed a test-retest variability in volume of distribution (V(T)) averaging 3% across brain regions. Humans dosed orally with MK-5757 showed reduced [(18)F]MK-0911 tracer concentration in brain proportional with MK-5757 dose and plasma level. [(18)F]MK-0911 was useful for determining MK-5757-induced receptor occupancy of ORL1 to guide MK-5757 dose-selection for clinical proof-of-concept studies. Additionally, [(18)F]MK-0911 may be a useful tool for studying the pharmacology of ORL1 in various human populations and disease states.


Assuntos
Benzimidazóis/farmacocinética , Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor/farmacocinética , Piperidinas/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Receptores Opioides/metabolismo , Adulto , Animais , Benzimidazóis/química , Encéfalo/metabolismo , Radioisótopos de Flúor/química , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Piperidinas/química , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Adulto Jovem , Receptor de Nociceptina
19.
ACS Med Chem Lett ; 4(9): 863-8, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900761

RESUMO

Rational modification of the potent calcitonin gene-related peptide (CGRP) receptor antagonist MK-3207 led to a series of analogues with enhanced CNS penetrance and a convenient chemical handle for introduction of a radiolabel. A number of (11)C-tracers were synthesized and evaluated in vivo, leading to the identification of [(11)C]8 ([(11)C]MK-4232), the first positron emission tomography tracer for the CGRP receptor.

20.
J Nucl Med ; 53(5): 787-95, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22499613

RESUMO

UNLABELLED: 2-((2S,5R,8S,11S)-5-benzyl-8-(4-((2S,3R,4R,5R,6S)-6-((2-(4-(3-(18)F-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)methyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxamido)butyl)-11-(3-guanidinopropyl)-3,6,9,12,15-pentaoxo-1,4,7,10,13-pentaazacyclopentadecan-2-yl)acetic acid ((18)F-RGD-K5) has been developed as an α(v)ß(3) integrin marker for PET. The purpose of this study was to determine the biodistribution and estimate the radiation dose from (18)F-RGD-K5 using whole-body PET/CT scans in monkeys and humans. METHODS: Successive whole-body PET/CT scans were obtained after intravenous injection of (18)F-RGD-K5 in 3 rhesus monkeys (167 ± 19 MBq) and 4 healthy humans (583 ± 78 MBq). In humans, blood samples were collected between the PET/CT scans, and stability of (18)F-RGD-K5 was assessed. Urine was also collected between the scans, to determine the total activity excreted in urine. The PET scans were analyzed to determine the radiotracer uptake in different organs. OLINDA/EXM software was used to calculate human radiation doses based on human and monkey biodistributions. RESULTS: (18)F-RGD-K5 was metabolically stable in human blood up to 90 min after injection, and it cleared rapidly from the blood pool, with a 12-min half-time. For both monkeys and humans, increased (18)F-RGD-K5 uptake was observed in the kidneys, bladder, liver, and gallbladder, with mean standardized uptake values at 1 h after injection for humans being approximately 20, 50, 4, and 10, respectively. For human biodistribution data, the calculated effective dose was 31 ± 1 µSv/MBq, and the urinary bladder wall had the highest absorbed dose at 376 ± 19 µGy/MBq using the 4.8-h bladder-voiding model. With the 1-h voiding model, these doses reduced to 15 ± 1 µSv/MBq for the effective dose and 103 ± 4 µGy/MBq for the absorbed dose in the urinary bladder wall. For a typical injected activity of 555 MBq, the effective dose would be 17.2 ± 0.6 mSv for the 4.8-h model, reducing to 8.3 ± 0.4 mSv for the 1-h model. For monkey biodistribution data, the effective dose to humans would be 22.2 ± 2.4 mSv for the 4.8-h model and 12.8 ± 0.2 mSv for the 1-h model. CONCLUSION: The biodistribution profile of (18)F-RGD-K5 in monkeys and humans was similar, with increased uptake in the bladder, liver, and kidneys. There was rapid clearance of (18)F-RGD-K5 through the renal system. The urinary bladder wall received the highest radiation dose and was deemed the critical organ. Both whole-body effective dose and bladder dose can be reduced by more frequent voiding. (18)F-RGD-K5 can be used safely for imaging α(v)ß(3) integrin expression in humans.


Assuntos
Integrina alfaVbeta3/metabolismo , Imagem Multimodal , Oligopeptídeos/farmacocinética , Peptídeos Cíclicos/farmacocinética , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Imagem Corporal Total , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Feminino , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Oligopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...