Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38370632

RESUMO

Failure of septation of the interventricular septum (IVS) is the most common congenital heart defect (CHD), but mechanisms for patterning the IVS are largely unknown. We show that a Tbx5+/Mef2cAHF+ progenitor lineage forms a compartment boundary bisecting the IVS. This coordinated population originates at a first- and second heart field interface, subsequently forming a morphogenetic nexus. Ablation of Tbx5+/Mef2cAHF+ progenitors cause IVS disorganization, right ventricular hypoplasia and mixing of IVS lineages. Reduced dosage of the CHD transcription factor TBX5 disrupts boundary position and integrity, resulting in ventricular septation defects (VSDs) and patterning defects, including Slit2 and Ntn1 misexpression. Reducing NTN1 dosage partly rescues cardiac defects in Tbx5 mutant embryos. Loss of Slit2 or Ntn1 causes VSDs and perturbed septal lineage distributions. Thus, we identify essential cues that direct progenitors to pattern a compartment boundary for proper cardiac septation, revealing new mechanisms for cardiac birth defects.

2.
Nature ; 602(7895): 129-134, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35082446

RESUMO

Differentiation proceeds along a continuum of increasingly fate-restricted intermediates, referred to as canalization1,2. Canalization is essential for stabilizing cell fate, but the mechanisms that underlie robust canalization are unclear. Here we show that the BRG1/BRM-associated factor (BAF) chromatin-remodelling complex ATPase gene Brm safeguards cell identity during directed cardiogenesis of mouse embryonic stem cells. Despite the establishment of a well-differentiated precardiac mesoderm, Brm-/- cells predominantly became neural precursors, violating germ layer assignment. Trajectory inference showed a sudden acquisition of a non-mesodermal identity in Brm-/- cells. Mechanistically, the loss of Brm prevented de novo accessibility of primed cardiac enhancers while increasing the expression of neurogenic factor POU3F1, preventing the binding of the neural suppressor REST and shifting the composition of BRG1 complexes. The identity switch caused by the Brm mutation was overcome by increasing BMP4 levels during mesoderm induction. Mathematical modelling supports these observations and demonstrates that Brm deletion affects cell fate trajectory by modifying saddle-node bifurcations2. In the mouse embryo, Brm deletion exacerbated mesoderm-deleted Brg1-mutant phenotypes, severely compromising cardiogenesis, and reveals an in vivo role for Brm. Our results show that Brm is a compensable safeguard of the fidelity of mesoderm chromatin states, and support a model in which developmental canalization is not a rigid irreversible path, but a highly plastic trajectory.


Assuntos
Diferenciação Celular , Linhagem da Célula , Mesoderma/citologia , Mesoderma/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Embrião de Mamíferos , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Miocárdio/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Fator 6 de Transcrição de Octâmero/metabolismo , Fenótipo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Fatores de Tempo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
3.
Dev Cell ; 56(3): 292-309.e9, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33321106

RESUMO

Haploinsufficiency of transcriptional regulators causes human congenital heart disease (CHD); however, the underlying CHD gene regulatory network (GRN) imbalances are unknown. Here, we define transcriptional consequences of reduced dosage of the CHD transcription factor, TBX5, in individual cells during cardiomyocyte differentiation from human induced pluripotent stem cells (iPSCs). We discovered highly sensitive dysregulation of TBX5-dependent pathways-including lineage decisions and genes associated with heart development, cardiomyocyte function, and CHD genetics-in discrete subpopulations of cardiomyocytes. Spatial transcriptomic mapping revealed chamber-restricted expression for many TBX5-sensitive transcripts. GRN analysis indicated that cardiac network stability, including vulnerable CHD-linked nodes, is sensitive to TBX5 dosage. A GRN-predicted genetic interaction between Tbx5 and Mef2c, manifesting as ventricular septation defects, was validated in mice. These results demonstrate exquisite and diverse sensitivity to TBX5 dosage in heterogeneous subsets of iPSC-derived cardiomyocytes and predicts candidate GRNs for human CHDs, with implications for quantitative transcriptional regulation in disease.


Assuntos
Redes Reguladoras de Genes , Haploinsuficiência/genética , Cardiopatias Congênitas/genética , Modelos Biológicos , Proteínas com Domínio T/genética , Animais , Padronização Corporal/genética , Diferenciação Celular , Dosagem de Genes , Ventrículos do Coração/patologia , Humanos , Fatores de Transcrição MEF2/metabolismo , Camundongos , Mutação/genética , Miócitos Cardíacos/metabolismo , Transcrição Gênica
4.
Nat Commun ; 11(1): 5913, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219211

RESUMO

Over the last 3 decades ATP-dependent chromatin remodelers have been thought to recognize chromatin at the level of single nucleosomes rather than higher-order organization of more than one nucleosome. We show the yeast ISW1a remodeler has such higher-order structural specificity, as manifested by large allosteric changes that activate the nucleosome remodeling and spacing activities of ISW1a when bound to dinucleosomes. Although the ATPase domain of Isw1 docks at the SHL2 position when ISW1a is bound to either mono- or di-nucleosomes, there are major differences in the interactions of the catalytic subunit Isw1 with the acidic pocket of nucleosomes and the accessory subunit Ioc3 with nucleosomal DNA. By mutational analysis and uncoupling of ISW1a's dinucleosome specificity, we find that dinucleosome recognition is required by ISW1a for proper chromatin organization at promoters; as well as transcription regulation in combination with the histone acetyltransferase NuA4 and histone H2A.Z exchanger SWR1.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Animais , Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Salmão , Fatores de Transcrição/metabolismo , Xenopus
5.
Cell Rep ; 28(1): 282-294.e6, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269447

RESUMO

Nucleosomes are the fundamental building blocks of chromatin that regulate DNA access and are composed of histone octamers. ATP-dependent chromatin remodelers like ISW2 regulate chromatin access by translationally moving nucleosomes to different DNA regions. We find that histone octamers are more pliable than previously assumed and distorted by ISW2 early in remodeling before DNA enters nucleosomes and the ATPase motor moves processively on nucleosomal DNA. Uncoupling the ATPase activity of ISW2 from nucleosome movement with deletion of the SANT domain from the C terminus of the Isw2 catalytic subunit traps remodeling intermediates in which the histone octamer structure is changed. We find restricting histone movement by chemical crosslinking also traps remodeling intermediates resembling those seen early in ISW2 remodeling with loss of the SANT domain. Other evidence shows histone octamers are intrinsically prone to changing their conformation and can be distorted merely by H3-H4 tetramer disulfide crosslinking.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/genética , Histonas/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Domínio Catalítico/genética , Simulação por Computador , Pegada de DNA , Histonas/química , Espectrometria de Massas , Modelos Moleculares , Nucleossomos/química , Ligação Proteica , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
6.
Development ; 146(19)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30814119

RESUMO

Chromatin remodeling complexes instruct cellular differentiation and lineage specific transcription. The BRG1/BRM-associated factor (BAF) complexes are important for several aspects of differentiation. We show that the catalytic subunit gene Brg1 has a specific role in cardiac precursors (CPs) to initiate cardiac gene expression programs and repress non-cardiac expression. Using immunopurification with mass spectrometry, we have determined the dynamic composition of BAF complexes during mammalian cardiac differentiation, identifying several cell-type specific subunits. We focused on the CP- and cardiomyocyte (CM)-enriched subunits BAF60c (SMARCD3) and BAF170 (SMARCC2). Baf60c and Baf170 co-regulate gene expression with Brg1 in CPs, and in CMs their loss results in broadly deregulated cardiac gene expression. BRG1, BAF60c and BAF170 modulate chromatin accessibility, to promote accessibility at activated genes while closing chromatin at repressed genes. BAF60c and BAF170 are required for proper BAF complex composition, and BAF170 loss leads to retention of BRG1 at CP-specific sites. Thus, dynamic interdependent BAF complex subunit assembly modulates chromatin states and thereby participates in directing temporal gene expression programs in cardiogenesis.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Complexos Multiproteicos/metabolismo , Organogênese/genética , Subunidades Proteicas/metabolismo , Animais , Diferenciação Celular/genética , Cromatina/metabolismo , DNA Helicases/metabolismo , Genoma , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Subunidades Proteicas/genética , Fatores de Tempo , Fatores de Transcrição/metabolismo
7.
Biol Open ; 7(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29183906

RESUMO

How chromatin-remodeling complexes modulate gene networks to control organ-specific properties is not well understood. For example, Baf60c (Smarcd3) encodes a cardiac-enriched subunit of the SWI/SNF-like BAF chromatin complex, but its role in heart development is not fully understood. We found that constitutive loss of Baf60c leads to embryonic cardiac hypoplasia and pronounced cardiac dysfunction. Conditional deletion of Baf60c in cardiomyocytes resulted in postnatal dilated cardiomyopathy with impaired contractile function. Baf60c regulates a gene expression program that includes genes encoding contractile proteins, modulators of sarcomere function, and cardiac metabolic genes. Many of the genes deregulated in Baf60c null embryos are targets of the MEF2/SRF co-factor Myocardin (MYOCD). In a yeast two-hybrid screen, we identified MYOCD as a BAF60c interacting factor; we showed that BAF60c and MYOCD directly and functionally interact. We conclude that Baf60c is essential for coordinating a program of gene expression that regulates the fundamental functional properties of cardiomyocytes.

8.
Development ; 143(16): 2882-97, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27531948

RESUMO

Precise gene expression ensures proper stem and progenitor cell differentiation, lineage commitment and organogenesis during mammalian development. ATP-dependent chromatin-remodeling complexes utilize the energy from ATP hydrolysis to reorganize chromatin and, hence, regulate gene expression. These complexes contain diverse subunits that together provide a multitude of functions, from early embryogenesis through cell differentiation and development into various adult tissues. Here, we review the functions of chromatin remodelers and their different subunits during mammalian development. We discuss the mechanisms by which chromatin remodelers function and highlight their specificities during mammalian cell differentiation and organogenesis.


Assuntos
Trifosfato de Adenosina/metabolismo , Cromatina/metabolismo , Animais , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Humanos
9.
Development ; 142(8): 1418-30, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25813539

RESUMO

The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also required to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. These findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions.


Assuntos
DNA Helicases/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula , Cromatina/metabolismo , DNA Helicases/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos/genética , Inativação Gênica/fisiologia , Histonas/metabolismo , Humanos , Mesoderma/citologia , Mesoderma/metabolismo , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas do Grupo Polycomb/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Fatores de Transcrição/genética
10.
Cell ; 152(3): 442-52, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374341

RESUMO

ISWI-family enzymes remodel chromatin by sliding nucleosomes along DNA, but the nucleosome translocation mechanism remains unclear. Here we use single-molecule FRET to probe nucleosome translocation by ISWI-family remodelers. Distinct ISWI-family members translocate nucleosomes with a similar stepping pattern maintained by the catalytic subunit of the enzyme. Nucleosome remodeling begins with a 7 bp step of DNA translocation followed by 3 bp subsequent steps toward the exit side of nucleosomes. These multi-bp, compound steps are comprised of 1 bp substeps. DNA movement on the entry side of the nucleosome occurs only after 7 bp of exit-side translocation, and each entry-side step draws in a 3 bp equivalent of DNA that allows three additional base pairs to be moved to the exit side. Our results suggest a remodeling mechanism with well-defined coordination at different nucleosomal sites featuring DNA translocation toward the exit side in 1 bp steps preceding multi-bp steps of DNA movement on the entry side.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Trifosfato de Adenosina/metabolismo , Pareamento de Bases , Montagem e Desmontagem da Cromatina , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Transferência Ressonante de Energia de Fluorescência , Hidrólise , Nucleossomos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
11.
Nat Struct Mol Biol ; 20(2): 222-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23334290

RESUMO

The ISWI family of ATP-dependent chromatin remodelers represses transcription by changing nucleosome positions. ISWI regulates nucleosome positioning by requiring a minimal length of extranucleosomal DNA for moving nucleosomes. ISW2 from Saccharomyces cerevisiae, a member of the ISWI family, has a conserved domain called SLIDE (SANT-like ISWI domain) that binds to extranucleosomal DNA ~19 base pairs from the edge of nucleosomes. Loss of SLIDE binding does not perturb binding of the ATPase domain or the initial movement of DNA inside of nucleosomes. Not only is extranucleosomal DNA required to help recruit ISW2, but also the interactions of the SLIDE domain with extranucleosomal DNA are functionally required to move nucleosomes.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , DNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Western Blotting , Centrifugação com Gradiente de Concentração , Montagem e Desmontagem da Cromatina/genética , Transferência Ressonante de Energia de Fluorescência , Regulação Fúngica da Expressão Gênica/genética , Radical Hidroxila/metabolismo , Marcadores de Fotoafinidade , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética
12.
Nucleic Acids Res ; 40(10): 4412-21, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22298509

RESUMO

An ATP-dependent DNA translocase domain consisting of seven conserved motifs is a general feature of all ATP-dependent chromatin remodelers. While motifs on the ATPase domains of the yeast SWI/SNF and ISWI families of remodelers are highly conserved, the ATPase domains of these complexes appear not to be functionally interchangeable. We found one reason that may account for this is the ATPase domains interact differently with nucleosomes even though both associate with nucleosomal DNA 17-18 bp from the dyad axis. The cleft formed between the two lobes of the ISW2 ATPase domain is bound to nucleosomal DNA and Isw2 associates with the side of nucleosomal DNA away from the histone octamer. The ATPase domain of SWI/SNF binds to the same region of nucleosomal DNA, but is bound outside of the cleft region. The catalytic subunit of SWI/SNF also appears to intercalate between the DNA gyre and histone octamer. The altered interactions of SWI/SNF with DNA are specific to nucleosomes and do not occur with free DNA. These differences are likely mediated through interactions with the histone surface. The placement of SWI/SNF between the octamer and DNA could make it easier to disrupt histone-DNA interactions.


Assuntos
Adenosina Trifosfatases/química , Fatores de Transcrição/química , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Domínio Catalítico , Montagem e Desmontagem da Cromatina , DNA/química , DNA/metabolismo , Histonas/metabolismo , Modelos Moleculares , Nucleossomos/metabolismo , Estrutura Terciária de Proteína , Fatores de Transcrição/metabolismo
13.
FEMS Microbiol Lett ; 326(2): 161-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22092490

RESUMO

The Mycobacterium tuberculosis murG gene, Rv2153, was expressed in Escherichia coli murG(Ts) strain OV58 on a plasmid under the control of the arabinose-inducible araBAD promoter. Mycobacterium tuberculosis murG rescued the growth of E. coli murG(Ts) at the nonpermissive temperature: transformants were only obtained in the presence of 0.2% arabinose at 42 °C, and their growth rate was dependent on arabinose concentrations. However, no MurG activity was detected in membranes from the transformant grown in arabinose at 42 °C, while MraY activity was normal. This observation led to the development of a membrane-based scintillation proximity assay for exogenous sources of MurG. Addition of purified E. coli MurG resulted in the reconstitution of MurG and peptidoglycan synthesis in these membranes. MurG is an attractive target for drug discovery, but assays to measure the activity of purified MurG are challenging. This presents an easy method to measure the activity of exogenous sources of MurG for structure-activity studies of mutant MurG proteins. It can also be used to compare the activity of, or effect of inhibitors on, MurG from other bacterial species.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Técnicas Biossensoriais/métodos , Escherichia coli/enzimologia , Escherichia coli/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , N-Acetilglucosaminiltransferases/análise , Arabinose/metabolismo , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Deleção de Genes , Expressão Gênica , Teste de Complementação Genética , Humanos , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Peptidoglicano/metabolismo , Plasmídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Transformação Bacteriana
14.
Methods Mol Biol ; 809: 367-80, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22113289

RESUMO

Packaging DNA into compact chromatin enables eukaryotic cells to organize and regulate their genome. Packaging is achieved by wrapping ∼146-147 bp of DNA around a histone octamer to form a nucleosome, the basic unit of chromatin. Chromatin is a barrier of the bound DNA to factors involved in DNA-dependent processes such as transcription, replication, recombination, and repair. Several multisubunit protein complexes can move nucleosome to different positions on DNA utilizing energy derived from ATP hydrolysis and thereby facilitate access to DNA. Several methods are described for measuring nucleosome movement both in vivo and in vitro which provide important insights into the remodeling process.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Nucleossomos/metabolismo , Adenosina Trifosfatases/metabolismo , Southern Blotting , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
15.
Methods Mol Biol ; 809: 381-409, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22113290

RESUMO

Chromatin plays a key regulatory role in several DNA-dependent processes as it regulates DNA access to different protein factors. Several multisubunit protein complexes interact, modify, or mobilize nucleosomes: the basic unit of chromatin, from its original location in an ATP-dependent manner to facilitate processes, such as transcription, replication, repair, and recombination. Knowledge of the interactions of chromatin remodelers with nucleosomes is a crucial requirement to understand the mechanism of chromatin remodeling. Here, we describe several methods to analyze the interactions of multisubunit chromatin-remodeling enzymes with nucleosomes.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Pegada de DNA , Nucleossomos/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Biochim Biophys Acta ; 1809(9): 476-87, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21616185

RESUMO

Chromatin is actively restructured by a group of proteins that belong to the family of ATP-dependent DNA translocases. These chromatin remodelers can assemble, relocate or remove nucleosomes, the fundamental building blocks of chromatin. The family of ATP-dependent chromatin remodelers has many properties in common, but there are also important differences that may account for their varying roles in the cell. Some of the important characteristics of these complexes have begun to be revealed such as their interactions with chromatin and their mechanism of operation. The different domains of chromatin remodelers are discussed in terms of their targets and functional roles in mobilizing nucleosomes. The techniques that have driven these findings are discussed and how these have helped develop the current models for how nucleosomes are remodeled. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.


Assuntos
Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Nucleossomos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...