Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(1): 377-387, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36335521

RESUMO

BACKGROUND: Shell color formation is an important physiological process in bivalves, the molecular genetic basis has potential application in bivalve aquaculture, but there is still remaining unclear about this issue. The cystine/glutamate transporter (Slc7a11) and cystathionine beta-synthase (Cbs) are integral genes in pheomelanin synthesis pathway, which is vital to skin pigmentation. METHODS AND RESULTS: Here, the sequences of b (0, +) -type amino acid transporter 1 (B-aat1) and Cbs in Pacific oyster (Crassostrea gigas) (CgB-aat1, CgCbs) were characterized. Phylogenetically, the deduced amino acid sequences of CgB-aat1 and CgCbs both possessed conserved features. Genes were both ubiquitously expressed in six tested tissues with more abundant expression level in central mantle. Besides, the polyclonal antibodies of CgB-aat1, CgCbs, CgTyr, and CgTyrp2 were successfully prepared. Immunofluorescence analysis revealed that CgB-aat1 and CgCbs proteins were both expressed in gill rudiments of eyed-larvae and concentrated mainly in cytoplasm of epithelial cell and nerve axons in mantle. Additionally, after CgB-aat1 or CgCbs silencing, expressions at mRNA and protein levels of CgB-aat1 and CgCbs involved in pheomelanin synthesis were significantly suppressed, and CgTyr, CgTyrp1 and CgTyrp2 related to eumelanin synthesis were also down-regulated but no apparent differences, respectively. Moreover, micrographic examination found less brown-granules at mantle edge in CgB-aat1 interference group. CONCLUSION: These results implied that pheomelanin synthesis was possible induced by CgB-aat1-CgTyr-CgCbs axis, and it played an essential role on mantle pigmentation in the oysters. These findings provide the useful genetic knowledge and enrich the physiological information for the shell color formation in bivalve aquaculture.


Assuntos
Crassostrea , Cistationina beta-Sintase , Animais , Cistationina beta-Sintase/metabolismo , Crassostrea/genética , Crassostrea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...