Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 770, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278805

RESUMO

Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) is a promising tool to study genomic rearrangements. However, the potential of SCRaMbLE to study genomic rearrangements is currently hindered, because a strain containing all 16 synthetic chromosomes is not yet available. Here, we construct SparLox83R, a yeast strain containing 83 loxPsym sites distributed across all 16 chromosomes. SCRaMbLE of SparLox83R produces versatile genome-wide genomic rearrangements, including inter-chromosomal events. Moreover, when combined with synthetic chromosomes, SCRaMbLE of hetero-diploids with SparLox83R leads to increased diversity of genomic rearrangements and relatively faster evolution of traits compared to hetero-diploids only with wild-type chromosomes. Analysis of the SCRaMbLEd strain with increased tolerance to nocodazole demonstrates that genomic rearrangements can perturb the transcriptome and 3D genome structure and consequently impact phenotypes. In summary, a genome with sparsely distributed loxPsym sites can serve as a powerful tool for studying the consequence of genomic rearrangements and accelerating strain engineering in Saccharomyces cerevisiae.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Rearranjo Gênico/genética , Cromossomos , Genômica
2.
Biology (Basel) ; 12(9)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37759602

RESUMO

The recently emerging high-throughput Pore-C (HiPore-C) can identify whole-genome high-order chromatin multi-way interactions with an ultra-high output, contributing to deciphering three-dimensional (3D) genome organization. However, it also brings new challenges to relevant data analysis. To alleviate this problem, we proposed the EpiMCI, a model for multi-way chromatin interaction prediction based on a hypergraph neural network with epigenomic signals as the input. The EpiMCI integrated separate hyperedge representations with coupling hyperedge information and obtained AUCs of 0.981 and 0.984 in the GM12878 and K562 datasets, respectively, which outperformed the current available method. Moreover, the EpiMCI can be applied to denoise the HiPore-C data and improve the data quality efficiently. Furthermore, the vertex embeddings extracted from the EpiMCI reflected the global chromatin architecture accurately. The principal component analysis suggested that it was well aligned with the activities of genomic regions at the chromatin compartment level. Taken together, the EpiMCI can accurately predict multi-way chromatin interactions and can be applied to studies relying on chromatin architecture.

3.
Plant J ; 116(1): 234-250, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37387536

RESUMO

Enhancers are critical cis-regulatory elements controlling gene expression during cell development and differentiation. However, genome-wide enhancer characterization has been challenging due to the lack of a well-defined relationship between enhancers and genes. Function-based methods are the gold standard for determining the biological function of cis-regulatory elements; however, these methods have not been widely applied to plants. Here, we applied a massively parallel reporter assay on Arabidopsis to measure enhancer activities across the genome. We identified 4327 enhancers with various combinations of epigenetic modifications distinctively different from animal enhancers. Furthermore, we showed that enhancers differ from promoters in their preference for transcription factors. Although some enhancers are not conserved and overlap with transposable elements forming clusters, enhancers are generally conserved across thousand Arabidopsis accessions, suggesting they are selected under evolution pressure and could play critical roles in the regulation of important genes. Moreover, comparison analysis reveals that enhancers identified by different strategies do not overlap, suggesting these methods are complementary in nature. In sum, we systematically investigated the features of enhancers identified by functional assay in A. thaliana, which lays the foundation for further investigation into enhancers' functional mechanisms in plants.


Assuntos
Arabidopsis , Animais , Arabidopsis/genética , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Epigênese Genética
4.
Nat Commun ; 14(1): 1250, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878904

RESUMO

Canonical three-dimensional (3D) genome structures represent the ensemble average of pairwise chromatin interactions but not the single-allele topologies in populations of cells. Recently developed Pore-C can capture multiway chromatin contacts that reflect regional topologies of single chromosomes. By carrying out high-throughput Pore-C, we reveal extensive but regionally restricted clusters of single-allele topologies that aggregate into canonical 3D genome structures in two human cell types. We show that fragments in multi-contact reads generally coexist in the same TAD. In contrast, a concurrent significant proportion of multi-contact reads span multiple compartments of the same chromatin type over megabase distances. Synergistic chromatin looping between multiple sites in multi-contact reads is rare compared to pairwise interactions. Interestingly, the single-allele topology clusters are cell type-specific even inside highly conserved TADs in different types of cells. In summary, HiPore-C enables global characterization of single-allele topologies at an unprecedented depth to reveal elusive genome folding principles.


Assuntos
Cromatina , Humanos , Alelos , Cromatina/genética
5.
Cell Rep ; 42(3): 112151, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827186

RESUMO

Transposable elements (TEs) are abundant in metazoan genomes and have multifaceted effects on host fitness. However, the mechanisms underlying the functions of TEs are still not fully understood. Here, we combine Hi-C, ATAC-seq, and ChIP-seq assays to report the existence of multimegabase supersized loop (SSL) clusters in the Xenopus tropicalis sperm. We show that SSL anchors are inaccessible and devoid of the architectural protein CTCF, RNA polymerase II, and modified histones. Nearly all SSL anchors are marked by Helitrons, a class II DNA transposon. Molecular dynamics simulations indicate that SSL clusters are likely formed via a molecular agent-mediated chromatin condensation process. However, only slightly more SSL anchor-associated genes are expressed at late embryo development stages, suggesting that SSL anchors might only function in sperm. Our work shows an evolutionarily distinct and sperm-specific genome structure marked by a subset of Helitrons, whose establishment and function remain to be explored.


Assuntos
Elementos de DNA Transponíveis , Sêmen , Animais , Masculino , Xenopus/genética , Elementos de DNA Transponíveis/genética , Histonas/genética , Cromatina/genética
6.
Cell Death Discov ; 8(1): 344, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915078

RESUMO

The pluripotency of naïve mouse embryonic stem cells (mES) is regulated by multiple signaling pathways, with inhibition of protein kinase C (PKCi) playing a particularly important role in maintaining naïve mES. However, the regulatory function of nucleosome remodeling and deacetylase (NuRD) complex in mES cultured in a PKCi system is unknown. We found that, compared with 2iL-derived mES, PKCi-derived mES showed low mRNA expression of NuRD complex subunits, including MBD3, HDAC1/HDAC2, MTA1, and RbAP46/RbAP48. Western blot showed that PKCi-derived mES expressed lower protein levels of MBD3 and HDAC2 at passage 3, as well as MBD3, HDAC2, and MTA1 at passage 10, indicating that PKCi suppressed NuRD complex expression. Knockdown of MBD3 increased PKCi-derived mES pluripotency by increasing NANOG and OCT4 expression and colony formation. By contrast, overexpression of MBD3 or removal of PKC inhibitor-induced differentiation of mES, results in reduced NANOG, OCT4, and REX1 expression and colony formation, increased differentiation-related gene expression, and differentiation into flat cells. Knockdown of MBD3 in mES upon PKC inhibitor removal partially reversed cell differentiation. Our results show that the regulatory NuRD complex and its MBD3 subunit influence the naïve pluripotency of mES cultured in a PKCi system.

7.
Development ; 149(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35950926

RESUMO

The morphology of the flowering plant is established during early embryogenesis. In recent years, many studies have focused on transcriptional profiling in plant embryogenesis, but the dynamic landscape of the Arabidopsis thaliana proteome remains elusive. In this study, Arabidopsis embryos at 2/4-cell, 8-cell, 16-cell, 32-cell, globular and heart stages were collected for nanoproteomic analysis. In total, 5386 proteins were identified. Of these, 1051 proteins were universally identified in all developmental stages and a range of 27 to 2154 proteins was found to be stage specific. These proteins could be grouped into eight clusters according to their expression levels. Gene Ontology enrichment analysis showed that genes involved in ribosome biogenesis and auxin-activated signalling were enriched during early embryogenesis, indicating that active translation and auxin signalling are important events in Arabidopsis embryo development. Combining RNA-sequencing data with the proteomics analysis, the correlation between mRNA and protein was evaluated. An overall positive correlation was found between mRNA and protein. This work provides a comprehensive landscape of the Arabidopsis proteome in early embryogenesis. Some important proteins/transcription factors identified through network analysis may serve as potential targets for future investigation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteoma/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
8.
J Anim Sci Biotechnol ; 13(1): 75, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35781353

RESUMO

BACKGROUND: The pig is an economically important livestock species and is a widely applied large animal model in medical research. Enhancers are critical regulatory elements that have fundamental functions in evolution, development and disease. Genome-wide quantification of functional enhancers in the pig is needed. RESULTS: We performed self-transcribing active regulatory region sequencing (STARR-seq) in the porcine kidney epithelial PK15 and testicular ST cell lines, and reliably identified 2576 functional enhancers. Most of these enhancers were located in repetitive sequences and were enriched within silent and lowly expressed genes. Enhancers poorly overlapped with chromatin accessibility regions and were highly enriched in chromatin with the repressive histone modification H3K9me3, which is different from predicted pig enhancers detected using ChIP-seq for H3K27ac or/and H3K4me1 modified histones. This suggests that most pig enhancers identified with STARR-seq are endogenously repressed at the chromatin level and may function during cell type-specific development or at specific developmental stages. Additionally, the PPP3CA gene is associated with the loin muscle area trait and the QKI gene is associated with alkaline phosphatase activity that may be regulated by distal functional enhancers. CONCLUSIONS: In summary, we generated the first functional enhancer map in PK15 and ST cells for the pig genome and highlight its potential roles in pig breeding.

9.
Am J Transl Res ; 14(6): 4295-4309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836851

RESUMO

Embryonic stem cell (ESC) research is critical to the scientific community, as their application in regenerative medicine can be widely beneficial. ESCs eventually withdraw from their self-renewal program and subsequently differentiate into specific cell lineages; however, the mechanisms regulating these processes remain unclear. PKC inhibition using 3-[1-[3-(dimethylamino) propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione (PKCi) is responsible for the derivation and maintenance of human, rat, and mouse ESCs, but the mechanism by which PKCi maintains stem cell self-renewal is poorly understood. By studying the PKCi stem cell (PKCi-mESC) transcriptome and epigenetic modification, we found the transcriptome of PKCi-mESC differed from 2i stem cells (2i-mESC), with 2010 up-regulated genes and 1784 down-regulated genes. Among them, genes related to core transcription factors, naïve-specific markers, and pluripotency are differentially expressed between the two stem cell lines. We analyzed epigenetic modification of PKCi-mESC and found the distribution of H3K27me3 signal was significantly reduced at transcription start sites (TSSs) throughout the genome and at differentially expressed genes (DEGs). Likewise, the H3K9me3 signal at TSSs throughout the genome was significantly reduced in PKCi-mESC, but the distribution on DEGs is reversed. Kdm4d and Kdm6a knockdown by RNA interference (RNAi) significantly altered the expression of genes related to self-renewal in PKCi-mESC. In conclusion, we revealed PKCi-mESC and 2i-mESC differentially express numerous genes, including stem cell-related genes. Furthermore, PKCi-mESC regulated gene expression through H3K27me3 and H3K9me3 modification, which maintained stem cell self-renewal capacity.

10.
Front Cell Dev Biol ; 10: 845118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517497

RESUMO

A/B compartments are observed in Hi-C data and coincide with eu/hetero-chromatin. However, many genomic regions are ambiguous under A/B compartment scheme. We develop MOSAIC (MOdularity and Singular vAlue decomposition-based Identification of Compartments), an accurate compartmental state detection scheme. MOSAIC reveals that those ambiguous regions segregate into two additional compartmental states, which typically correspond to short genomic regions flanked by long canonical A/B compartments with opposite activities. They are denoted as micro-compartments accordingly. In contrast to the canonical A/B compartments, micro-compartments cover ∼30% of the genome and are highly dynamic across cell types. More importantly, distinguishing the micro-compartments underpins accurate characterization of chromatin structure-function relationship. By applying MOSAIC to GM12878 and K562 cells, we identify CD86, ILDR1 and GATA2 which show concordance between gene expression and compartmental states beyond the scheme of A/B compartments. Taken together, MOSAIC uncovers fine-scale and dynamic compartmental states underlying transcriptional regulation and disease.

11.
Methods Mol Biol ; 2484: 55-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461444

RESUMO

High-throughput chromosome conformation capture (Hi-C) enables the global quantification of chromatin interaction frequency in eukaryotic nuclei. This method is based on in situ Hi-C, in which chromatin is cross-linked with formaldehyde, then digested with restriction enzyme. Biotin-labeled nucleotide is incorporated before the spatially adjacent DNA ends are ligated, making it possible to enrich specifically the chimeric ligation products for deep sequencing. In this chapter, we describe a modified in situ Hi-C protocol for the global chromatin interaction analysis in plants.


Assuntos
Cromatina , Cromossomos , Núcleo Celular/genética , Cromatina/genética , DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Conformação de Ácido Nucleico , Plantas/genética
12.
Front Genet ; 13: 818344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251128

RESUMO

Negative regulatory elements (NREs) down-regulate gene expression by inhibiting the activities of promoters or enhancers. The repressing activity of NREs can be measured globally by massively parallel reporter assays (MPRAs). However, most existing algorithms are designed for the statistical detection of positively enriched signals in MPRA datasets. To identify reduced signals in MPRA experiments, we designed a NRE identification program, fast-NR, by integrating the count and graphic features of sequenced reads to detect NREs using datasets generated by experiments of self-transcribing active regulatory region sequencing (STARR-seq). Fast-NR identified hundreds of silencers in human K562 cells that can be validated by independent methods.

13.
Nat Genet ; 53(7): 1075-1087, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099928

RESUMO

Animal interphase chromosomes are organized into topologically associating domains (TADs). How TADs are formed is not fully understood. Here, we combined high-throughput chromosome conformation capture and gene silencing to obtain insights into TAD dynamics in Xenopus tropicalis embryos. First, TAD establishment in X. tropicalis is similar to that in mice and flies and does not depend on zygotic genome transcriptional activation. This process is followed by further refinements in active and repressive chromatin compartments and the appearance of loops and stripes. Second, within TADs, higher self-interaction frequencies at one end of the boundary are associated with higher DNA occupancy of the architectural proteins CTCF and Rad21. Third, the chromatin remodeling factor ISWI is required for de novo TAD formation. Finally, TAD structures are variable in different tissues. Our work shows that X. tropicalis is a powerful model for chromosome architecture analysis and suggests that chromatin remodeling plays an essential role in de novo TAD establishment.


Assuntos
Genoma , Modelos Moleculares , Conformação de Ácido Nucleico , Xenopus/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ciclo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Biologia Computacional/métodos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genômica/métodos , Fenótipo , Xenopus/embriologia , Proteínas de Xenopus/genética
14.
J Sci Food Agric ; 100(13): 4858-4869, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32478412

RESUMO

BACKGROUND: Carrot carotenoids are typically located in chromoplasts, forming a crystalline substructure. Cell walls and chromoplasts therefore constitute two major physical barriers to the release of carotenoids from the food matrix during digestion. The release of carotenoids from these physical barriers is supposed to be substantially affected by mechanical factors during food processing and oral mastication. Given the implications of this, the effects of four different processing procedures, and various mastication levels, on the carotenoid bioaccessibility of carrot chips were evaluated. RESULTS: Restructuring and drying methods substantially affected the carotenoid bioaccessibility of carrot chips. The highest carotenoid bioaccessibility was obtained for the air-dried combined with instant pressure-drop-dried (AD-DIC) restructured chips. Although the fresh carrots possessed the highest carotenoid content, their bioaccessibility was lower than that of the carrot chips. The evolution of the particle sizes of the samples was responsible for the changes in carotenoid bioaccessibility due to oral masitication. The particle size of the fresh carrots decreased with increasing oral masitication, which favored carotenoid bioaccessibilty. However, the restructured chips that combined freeze drying with instant pressure-drop drying (R-FD-DIC) demonstrated the opposite trend, probably caused by the severe aggregation of the sample during digestion, which compromised the effect of mastication on the release of carotenoid. CONCLUSION: Data regarding the effects of the drying process and oral mastication digestion behavior on the samples suggested that AD-DIC-dried restructured carrot chips are effective in enhancing carotenoid bioaccessibility, which explains the key factors involved in the release of carotenoids from carrot chips prepared by different processes. © 2020 Society of Chemical Industry.


Assuntos
Carotenoides/metabolismo , Daucus carota/química , Daucus carota/metabolismo , Manipulação de Alimentos/métodos , Carotenoides/química , Digestão , Humanos , Mastigação , Tamanho da Partícula , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Lanches
15.
Gigascience ; 9(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32048715

RESUMO

BACKGROUND: Chromatin architecture is an essential factor regulating gene transcription in different cell types and developmental phases. However, studies on chromatin architecture in perennial woody plants and on the function of chromatin organization in sex determination have not been reported. RESULTS: Here, we produced a chromosome-scale de novo genome assembly of the woody plant Jatropha curcas with a total length of 379.5 Mb and a scaffold N50 of 30.7 Mb using Pacific Biosciences long reads combined with genome-wide chromosome conformation capture (Hi-C) technology. Based on this high-quality reference genome, we detected chromatin architecture differences between monoecious and gynoecious inflorescence buds of Jatropha. Differentially expressed genes were significantly enriched in the changed A/B compartments and topologically associated domain regions and occurred preferentially in differential contact regions between monoecious and gynoecious inflorescence buds. Twelve differentially expressed genes related to flower development or hormone synthesis displayed significantly different genomic interaction patterns in monoecious and gynoecious inflorescence buds. These results demonstrate that chromatin organization participates in the regulation of gene transcription during the process of sex differentiation in Jatropha. CONCLUSIONS: We have revealed the features of chromatin architecture in perennial woody plants and investigated the possible function of chromatin organization in Jatropha sex differentiation. These findings will facilitate understanding of the regulatory mechanisms of sex determination in higher plants.


Assuntos
Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Jatropha/genética , Cromatina/química , Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Jatropha/crescimento & desenvolvimento
16.
Commun Biol ; 2: 267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341966

RESUMO

PCR amplification of Hi-C libraries introduces unusable duplicates and results in a biased representation of chromatin interactions. We present a simplified, fast, and economically efficient Hi-C library preparation procedure, SAFE Hi-C, which generates sufficient non-amplified ligation products for deep sequencing from 30 million Drosophila cells. Comprehensive analysis of the resulting data shows that amplification-free Hi-C preserves higher complexity of chromatin interaction and lowers sequencing depth for the same number of unique paired reads. For human cells which have a large genome, SAFE Hi-C recovers enough ligated fragments for direct high-throughput sequencing without amplification from as few as 250,000 cells. Comparison with published in situ Hi-C data from millions of human cells demonstrates that amplification introduces distance-dependent amplification bias, which results in an increased background noise level against genomic distance. With amplification bias avoided, SAFE Hi-C may produce a chromatin interaction network more faithfully reflecting the real three-dimensional genomic architecture.


Assuntos
Cromatina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Drosophila/genética , Genômica , Humanos , Reação em Cadeia da Polimerase/métodos , Mapas de Interação de Proteínas , Globinas beta/genética
17.
Genomics Proteomics Bioinformatics ; 17(2): 140-153, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31201999

RESUMO

Enhancers activate transcription in a distance-, orientation-, and position-independent manner, which makes them difficult to be identified. Self-transcribing active regulatory region sequencing (STARR-seq) measures the enhancer activity of millions of DNA fragments in parallel. Here we used STARR-seq to generate a quantitative global map of rice enhancers. Most enhancers were mapped within genes, especially at the 5' untranslated regions (5'UTR) and in coding sequences. Enhancers were also frequently mapped proximal to silent and lowly-expressed genes in transposable element (TE)-rich regions. Analysis of the epigenetic features of enhancers at their endogenous loci revealed that most enhancers do not co-localize with DNase I hypersensitive sites (DHSs) and lack the enhancer mark of histone modification H3K4me1. Clustering analysis of enhancers according to their epigenetic marks revealed that about 40% of identified enhancers carried one or more epigenetic marks. Repressive H3K27me3 was frequently enriched with positive marks, H3K4me3 and/or H3K27ac, which together label enhancers. Intergenic enhancers were also predicted based on the location of DHS regions relative to genes, which overlap poorly with STARR-seq enhancers. In summary, we quantitatively identified enhancers by functional analysis in the genome of rice, an important model plant. This work provides a valuable resource for further mechanistic studies in different biological contexts.


Assuntos
Elementos Facilitadores Genéticos , Genômica/métodos , Oryza/genética , Análise de Sequência de DNA , Transcrição Gênica , Acetilação , Sequência de Bases , Desoxirribonuclease I/metabolismo , Epigênese Genética , Genes de Plantas , Código das Histonas/genética , Histonas/metabolismo , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Sequências Repetitivas de Ácido Nucleico/genética
18.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30988161

RESUMO

Cell division requires constriction of an actomyosin ring to segregate the genetic material equally into two daughter cells. The spatial and temporal regulation of the contractile ring at the division plane primarily depends on intracellular signals mediated by the centralspindlin complex and astral microtubules. Although much investigative work has elucidated intracellular factors and mechanisms controlling this process, the extracellular regulation of cytokinesis remains unclear. Thus far, the extracellular matrix protein Hemicentin (HIM-4) has been proposed to be required for cleavage furrow stabilization. The underlying molecular mechanism, however, has remained largely unknown. Here, we show that HIM-4 and anillin (ANI-1) genetically act in the same pathway to maintain the rachis bridge stability in the germline. Our FRAP experiments further reveal that HIM-4 restricts the motility of ANI-1. In addition, we demonstrate that HIM-4 is recruited to the cleavage site in dividing germ cells and promotes the proper ingression of the cleavage membrane. Collectively, we propose that HIM-4 is an extracellular factor that regulates ANI-1 for germ cell membrane stabilization and contractile ring formation in Caenorhabditis elegans germline cells.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Proteínas Contráteis/metabolismo , Citocinese/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Células Germinativas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Segregação de Cromossomos/fisiologia , Escherichia coli/genética , Técnicas de Introdução de Genes , Proteínas dos Microfilamentos/genética , Interferência de RNA
19.
FASEB J ; 33(6): 6962-6968, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30844313

RESUMO

Precise single-base editing in Xenopus tropicalis would greatly expand the utility of this true diploid frog for modeling human genetic diseases caused by point mutations. Here, we report the efficient conversion of C-to-T or G-to-A in X. tropicalis using the rat apolipoprotein B mRNA editing enzyme catalytic subunit 1-XTEN-clustered regularly interspaced short palindromic repeat-associated protein 9 (Cas9) nickase-uracil DNA glycosylase inhibitor-nuclear localization sequence base editor [base editor 3 (BE3)]. Coinjection of guide RNA and the Cas9 mutant complex mRNA into 1-cell stage X. tropicalis embryos caused precise C-to-T or G-to-A substitution in 14 out of 19 tested sites with efficiencies of 5-75%, which allowed for easy establishment of stable lines. Targeting the conserved T-box 5 R237 and Tyr C28 residues in X. tropicalis with the BE3 system mimicked human Holt-Oram syndrome and oculocutaneous albinism type 1A, respectively. Our data indicate that BE3 is an easy and efficient tool for precise base editing in X. tropicalis.-Shi, Z., Xin, H., Tian, D., Lian, J., Wang, J., Liu, G., Ran, R., Shi, S., Zhang, Z., Shi, Y., Deng, Y., Hou, C., Chen, Y. Modeling human point mutation diseases in Xenopus tropicalis with a modified CRISPR/Cas9 system.


Assuntos
Anormalidades Múltiplas/genética , Albinismo Oculocutâneo/genética , Sistemas CRISPR-Cas , Cardiopatias Congênitas/genética , Comunicação Interatrial/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Mutação Puntual , Deformidades Congênitas das Extremidades Superiores/genética , Xenopus/embriologia , Animais , Sequência de Bases , Feminino , Genótipo , Humanos , Masculino
20.
J Sci Food Agric ; 99(6): 2826-2834, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30444034

RESUMO

BACKGROUND: An abundance of shiitake mushrooms is consumed in dried form around the world. In the present study, changes in water state, water distribution and microstructure of shiitake mushrooms during hot-air drying (HAD) and far-infrared radiation drying (FIRD) processes were investigated using low-field nuclear magnetic resonance and scanning electron microscopy. Quality attributes of the dried products were compared in terms of drying property, appearance, rehydration behavior, texture and storage stability. RESULTS: Compared with HAD, the rate of water diffusion and evaporation of the shiitake mushrooms dried by FIRD was higher, thus resulting in a shorter drying time (630 min), a lower water content (0.07 g g-1 wet basis) and a higher glass transition temperature (7.88 °C) for dried products. Moreover, a homogenous and porous microstructure with less shrinkage and case hardening was demonstrated by the FIRD samples, indicating a superior texture, including a larger pileus diameter (3.4 cm), a higher rehydration ratio (7.31), a lower hardness (37.93 N) and a higher crispness (1.41 mm) for FIRD shiitake mushrooms. CONCLUSION: High-quality shiitake mushrooms with a desirable texture could be produced by FIRD by enhancing the diffusion of internal water and alleviating the case hardening during a relatively short drying process. © 2018 Society of Chemical Industry.


Assuntos
Conservação de Alimentos/métodos , Temperatura Alta , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Cogumelos Shiitake/química , Água , Dessecação , Raios Infravermelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...