Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chim Acta ; 551: 117616, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884118

RESUMO

BACKGROUND: Oxidized lipids are essential bioactive lipid mediators generated during infection that regulate oxidative stress and the inflammatory response, but their signatures in patients with sepsis-associated acute kidney injury (SA-AKI) are poorly understood. This study analyzed the oxidative lipidomics of plasma from patients with SA-AKI to reveal the underlying biomarkers and pathophysiological mechanisms involved in sepsis. MATERIALS: A total of 67 patients with SA-AKI and 20 age- and sex-matched healthy controls (HCs) participated in this prospective cohort study. Among the patients with SA-AKI, 14 cases had stage I-II AKI and 53 cases had stage III AKI. Oxidative lipidomic analysis of plasma samples was conducted using ultra performance liquid chromatography coupled with tandem mass spectrometric (UPLC-MS /MS) detection. RESULTS: Among 21 kinds of differentially oxidized lipids, 5(S),12(S)-DiHETE, 5-isoPGF2VI, 5,6-DiHETrE, 11,12-EET and 9,10-DiHOME showed the best performance. The prediction model incorporating them has shown highly sensitive and specific in distinguishing different stages of SA-AKI from HCs. The annotation of Kyoto Encyclopedia of Genes and Genomes illustrated that the overall downregulation of vascular smooth muscle contraction was closely related to the pathophysiological mechanism of SA-AKI. CONCLUSION: This study revealed alterations in the characteristic oxidized lipids in the plasma of SA-AKI patients, and these lipids had high diagnostic efficiency and potential targeted intervention value for SA-AKI.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Lipidômica , Estudos Prospectivos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Sepse/complicações , Estresse Oxidativo , Lipídeos
2.
Oxid Med Cell Longev ; 2022: 7553928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36285295

RESUMO

The microRNA-214 (miR-214) precursor is formed by the DNM3 gene on human chromosome 1q24.3, which is encoded and transcribed in the nucleus and processed into mature miR-214 in the cytoplasm. Association of miR-214 with the interstitial fibrosis of the kidney has been reported in existing research. Renal interstitial fibrosis is considered necessary during the process of various renal injuries in chronic kidney disease (CKD). One of the important mechanisms is the TGF- (transforming growth factor-) ß1-stimulated epithelial interstitial transformation (EMT). The specific mechanisms of miR-214-3p in renal interstitial fibrosis and whether it participates in EMT are worthy of further investigation. In this paper, we first demonstrated modulation of the downstream PI3K/AKT axis by miR-214-3p through targeting phosphatase and tension protein homologues (PTEN), indicating the miRNA's participation in unilateral ureteral obstruction (UUO) nephropathy and TGF-ß1-induced EMT. We overexpressed or silenced miR-214-3p and PTEN for probing into the correlation of miR-214-3p with PTEN and the downstream PI3K/AKT signalling pathways. According to the results of the study, miR-214-3p overexpression silenced PTEN, activated the PI3K/AKT signalling pathway, and exacerbated EMT induced by TGF-ß1, while miR-214-3p knockdown had the opposite effect. In miR-214-3p knockdown mice, the expression of PTEN was increased, the PI3K/AKT signalling pathway was inhibited, and fibrosis was alleviated. In conclusion, miR-214-3p regulates the EMT of renal tubular cells induced by TGF-ß1 by targeting PTEN and regulating the PI3K/AKT signalling pathway. Furthermore, miR-214-3p knockdown can reduce renal interstitial fibrosis through the PTEN/PI3K/AKT pathway.


Assuntos
Nefropatias , MicroRNAs , Humanos , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fibrose , Nefropatias/genética , Nefropatias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Transição Epitelial-Mesenquimal/genética
3.
J Orthop Surg Res ; 16(1): 646, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717689

RESUMO

BACKGROUND: Osteoarthritis is a chronic inflammatory disease of the joints associated with significant morbidity and lower quality of life. Current treatment strategies focus on reducing cartilage degeneration but fail to restore their proliferative ability. Super-activated platelet lysate (sPL) is an enhanced form of platelet-rich plasma that can be easily inactivated. The purpose of this study is to evaluate whether sPL-loaded PLGA/chitosan/gelatin microspheres can prevent and treat osteoarthritis. METHODS: Features of biological microspheres were detected by SEM and ELISA. Osteoarthritis chondrocytes were co-cultured with hydrogel loaded with sPL. The effect of biological microspheres on chondrocyte proliferation was evaluated using a CCK-8 cell proliferation test. Cell morphology and cell necrosis were measured with a microscope. The gene expression levels of cartilage-related markers type 2 collagen, aggrecan (ACAN), and SRY type high mobility group box-9 (SOX9) were determined by real-time quantitative polymerase chain reaction (Rt-PCR). A rat osteoarthritis model was established. Micro-CT was used to characterize cartilaginous changes after the injection of biological microspheres. Histopathological HE staining, Safranin-O Fast Green staining and staining scores, type II collagen staining, and proteoglycan staining were used to evaluate the degree of cartilaginous repair. RESULTS: Biological microspheres were able to continuously release biological factors. Exposure to loading sPL microspheres significantly increased chondrocyte proliferation, reduced cell necrosis, and increased the expression of cartilage markers type 2 collagen, ACAN, and SOX9 in osteoarthritic chondrocytes. In vivo experiments found that biological microspheres also smoothen cartilage surfaces, promote the expression of proteoglycan and type 2 collagen while also increasing cartilaginous integrity as evaluated using Safranin-O Fast Green staining. CONCLUSIONS: PLGA/chitosan/gelatin hydrogel loaded with sPL is a promising tool for effective and non-invasive articular cartilage repair in osteoarthritis. Biological microspheres loaded with sPL release various biological factors to promote chondrocyte proliferation and upregulate chondrocyte functionalization genes (SOX9, CoX II, ACAN), leading to an overall enhanced cartilaginous matrix.


Assuntos
Osteoartrite , Agrecanas , Animais , Fatores Biológicos , Cartilagem Articular , Quitosana , Condrócitos , Colágeno Tipo II , Preparações de Ação Retardada , Gelatina , Hidrogéis , Injeções Intra-Articulares , Microesferas , Necrose , Osteoartrite/tratamento farmacológico , Proteoglicanas , Qualidade de Vida , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...