Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Zhejiang Univ Sci B ; 16(10): 865-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26465134

RESUMO

In this study, we isolated an environmental clone of Ochrobactrum intermedium, strain 2745-2, from the formation water of Changqing oilfield in Shanxi, China, which can degrade crude oil. Strain 2745-2 is aerobic and rod-shaped with optimum growth at 42 °C and pH 5.5. We sequenced the genome and found a single chromosome of 4 800 175 bp, with a G+C content of 57.63%. Sixty RNAs and 4737 protein-coding genes were identified: many of the genes are responsible for the degradation, emulsification, and metabolizing of crude oil. A comparative genomic analysis with related clinical strains (M86, 229E, and LMG3301(T)) showed that genes involved in virulence, disease, defense, phages, prophages, transposable elements, plasmids, and antibiotic resistance are also present in strain 2745-2.


Assuntos
Proteínas de Bactérias/genética , Ochrobactrum/genética , Ochrobactrum/isolamento & purificação , Petróleo/microbiologia , Microbiologia da Água , Ochrobactrum/classificação , Especificidade da Espécie
2.
Microbiologyopen ; 3(4): 446-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24890829

RESUMO

Oil reservoirs are specific habitats for the survival and growth of microorganisms in general. Pseudomonas stutzeri which is believed to be an exogenous organism inoculated into oil reservoirs during the process of oil production was detected frequently in samples from oil reservoirs. Very little is known, however, about the distribution and genetic structure of P. stutzeri in the special environment of oil reservoirs. In this study, we collected 59 P. stutzeri 16S rRNA gene sequences that were identified in 42 samples from 25 different oil reservoirs and we isolated 11 cultured strains from two representative oil reservoirs aiming to analyze the diversity and genomovar assignment of the species in oil reservoirs. High diversity of P. stutzeri was observed, which was exemplified in the detection of sequences assigned to four known genomovars 1, 2, 3, 20 and eight unknown genomic groups of P. stutzeri. The frequent detection and predominance of strains belonging to genomovar 1 in most of the oil reservoirs under study indicated an association of genomovars of P. stutzeri with the oil field environments.


Assuntos
Variação Genética , Campos de Petróleo e Gás/microbiologia , Pseudomonas stutzeri/classificação , Pseudomonas stutzeri/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , Pseudomonas stutzeri/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Sci Rep ; 2: 760, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23094135

RESUMO

Water-flooded oil reservoirs have specific ecological environments due to continual water injection and oil production and water recycling. Using 16S rRNA gene clone library analysis, the microbial communities present in injected waters and produced waters from four typical water-flooded oil reservoirs with different in situ temperatures of 25 °C, 40 °C, 55 °C and 70 °C were examined. The results obtained showed that the higher the in situ temperatures of the oil reservoirs is, the less the effects of microorganisms in the injected waters on microbial community compositions in the produced waters is. In addition, microbes inhabiting in the produced waters of the four water-flooded oil reservoirs were varied but all dominated by Proteobacteria. Moreover, most of the detected microbes were not identified as indigenous. The objective of this study was to expand the pictures of the microbial ecosystem of water-flooded oil reservoirs.


Assuntos
Óleos Combustíveis/microbiologia , Microbiologia da Água , Biodiversidade , China , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ecossistema , Óleos Combustíveis/toxicidade , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Temperatura , Poluentes Químicos da Água/toxicidade
4.
Appl Microbiol Biotechnol ; 95(3): 811-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22159733

RESUMO

Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.


Assuntos
Biota , Campos de Petróleo e Gás/microbiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Appl Microbiol Biotechnol ; 88(6): 1413-22, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20803140

RESUMO

Microbial plugging, a microbial enhancement of oil recovery (MEOR) technique, has been applied in a candidate oil reservoir of Daqing Oil Field (China). The goal of this study is to monitor the survival of injected bacteria and reveal the response of microbial communities in field trial of microbial plugging through injection of selected microbial culture broth and nutrients. Culture-dependent enrichment and culture-independent 16S rDNA clone library methods were used. The results show that it was easy to activate targeted biopolymer-producing bacteria in a laboratory environment, and it was difficult for injected exogenous bacteria to survive. In addition, microbial communities in the oil reservoir also changed before and after the field trial. However, microbial communities, activated by fermentative medium for biopolymer-producing bacteria, appeared to show greater differences in the laboratory than in the natural reservoir. It was concluded that microbial populations monitoring was important to MEOR; results of response of microbial communities could provide a guide for the future field trials.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Petróleo/microbiologia , Microbiologia do Solo , Bactérias/genética , China , Análise por Conglomerados , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Viabilidade Microbiana , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...