Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 14(1): 37, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622373

RESUMO

This research aimed to investigate effects of different yeast culture (YC) levels on in vitro fermentation characteristics and bacterial and fungal community under high concentrate diet. A total of 5 groups were included in the experiment: control group without YC (CON), YC1 (0.5% YC proportion of substrate dry matter), YC2 (1%), YC3 (1.5%) and YC4 (2%). After 48 h of fermentation, the incubation fluids and residues were collected to analyze the ruminal fermentation parameters and bacterial and fungal community. Results showed that the ruminal fluid pH of YC2 and YC4 groups was higher (P < 0.05) than that of CON group. Compared with CON group, the microbial protein, propionate and butyrate concentrations and cumulative gas production at 48 h of YC2 group were significantly increased (P < 0.05), whereas an opposite trend of ammonia nitrogen and lactate was observed between two groups. Microbial analysis showed that the Chao1 and Shannon indexes of YC2 group were higher (P < 0.05) than those of CON group. Additionally, YC supplementation significantly decreased (P < 0.05) Succinivibrionaceae_UCG-001, Streptococcus bovis and Neosetophoma relative abundances. An opposite tendency of Aspergillus abundance was found between CON and YC treatments. Compared with CON group, the relative abundances of Prevotella, Succiniclasticum, Butyrivibrio and Megasphaera elsdenii were significantly increased (P < 0.05) in YC2 group, while Apiotrichum and unclassified Clostridiales relative abundances were decreased (P < 0.05). In conclusion, high concentrate substrate supplemented with appropriate YC (1%) can improve ruminal fermentation and regulate bacterial and fungal composition.

2.
Int J Biol Macromol ; 263(Pt 2): 130251, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368991

RESUMO

Compared with traditional papermaking, foam forming is a new papermaking technology that uses foam instead of water to disperse fibres, which can effectively solve the problem of poor evenness of ceramic paper, but the instability of foam itself affects the application of foam forming technology. Herein, a highly stable foaming agent for foam forming technology was prepared via physical reaction of lauryl dimethyl amine oxide (OB-2) with filamentous nanocellulose (cellulose nanofiber (CNF-C) and bacterial cellulose (BC)). Then, the quartz paper was prepared by foam forming technology. Firstly, hydrogen bond interactions between hydroxyl groups of the filamentous nanocellulose and hydrophilic moieties on OB-2 enabled the formation of a 3D nanonetwork layer on the surface of the bubble, which extended the half-life of the bubble and effectively prevented the bubble from bursting or coalescing. Then, the foam was extruded and cracked, and the filamentous nanocellulose was retained on the quartz fibres to prepare filamentous nanocellulose/quartz fibre paper by foam forming technology. The quartz paper exhibited excellent evenness and mechanical properties. In conclusion, the research of foam forming technology is of great significance to the application and development of special paper.


Assuntos
Nanofibras , Quartzo , Celulose/química , Nanofibras/química , Tensoativos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...