Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134603, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38749243

RESUMO

Polybutylene adipate terephthalic acid (PBAT) is an emerging biodegradable material in food packaging. However, concerns have been raised regarding the potential hazards it could pose to food safety. In this study, the changes of PBAT films during food contact and the release of small molecules were inestigated by a multiscale approach. On a macro-scale, the surface roughness of the films increased with the reduction in the concentration of food simulants and the increase in contact temperatures, especially after immersion in acidic food environments. On a micro-scale, the crystallinity (Xc) and degradation indexes (DI) of the films increased by 5.7-61.2% and 7.8-48.6%, respectively, which led to a decrease in thermal stability. On a scale approaching the molecular level, 2,4-di-tert-butylphenol (2,4-DTBP) was detected by gas chromatography-mass spectrometry (GC-MS/MS) with the highest migration content, and the release behavior of 2,4-DTBP was further investigated by migration kinetics. In addition, terephthalic acid (TPA), a hydrolysis product of PBAT, was detected in acidic food environments by liquid chromatography-mass spectrometry (LC-MS/MS). The results of this study could provide practical guidance and assistance to promote sustainable development in the field of food packaging.


Assuntos
Embalagem de Alimentos , Ácidos Ftálicos , Ácidos Ftálicos/química , Poliésteres/química , Adipatos/química , Contaminação de Alimentos/análise , Cromatografia Gasosa-Espectrometria de Massas
2.
Int J Biol Macromol ; 267(Pt 2): 131588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615860

RESUMO

Dietary selenium (Se) supplementation has recently received increasing attention; however, Selenium nanoparticles (SeNPs) exhibit poor stability and tend to aggregate in aqueous solution. Therefore, enhancing the stability of SeNPs and their effective delivery to plants remain challenging. In this study, sodium alginate (SA) and lysozyme (LZ) were reacted via the wet-heat Maillard reaction (MR) to obtain amphiphilic alginate-based polymers (SA-LZ). Alkyl glycosides (APG) were introduced into SA-LZ to enhance the deposition of SeNPs in leaves. Thus, a renewable and degradable polysaccharide-based material (SA-LZ/APG) loaded with Se formed an amphiphilic alginate-based-based shell with a Se core. Notably, the encapsulation of SeNPs into a polysaccharide base (SA-LZ/APG) increased the stabilization of SeNPs and resulted in orange-red, zero-valent, monoclinic and spherical SeNPs with a mean diameter of approximately 43.0 nm. In addition, SA-LZ/APG-SeNPs reduced the interfacial tension of plant leaves and increased the Se content of plants compared to the blank group. In vitro studies have reported that SA-LZ/APG-SeNPs and SA-LZ-SeNPs have significantly better clearance of DDPH and ABTS than that of APG-SeNPs. Thus, we believe that SA-LZ/APG is a promising smart delivery system that can synergistically enhance the stability of SeNPs in aqueous solutions and improve the bioavailability of Se nutrient solutions.


Assuntos
Alginatos , Glicosídeos , Nanopartículas , Selênio , Alginatos/química , Selênio/química , Nanopartículas/química , Glicosídeos/química , Folhas de Planta/química , Muramidase/química , Tensoativos/química , Estabilidade de Medicamentos
3.
Front Chem ; 10: 847986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464211

RESUMO

Surfactants adsorption onto carbonate reservoirs would cause surfactants concentrations decrease in surfactant flooding, which would decrease surfactant efficiency in practical applications of enhanced oil recovery (EOR) processes. Different surfactants could be classified as cationic surfactants, anionic surfactants, non-ionic surfactants according to the main charge, or be classified as chemical surfactant and bio-surfactant according to the surfactant origin. However, the research on different type surfactants adsorption on carbonate reservoirs surface differences was few. Therefore, five representative surfactants (CTAB, SDS, TX-100, sophorolipid, rhamonilipid) adsorption effect onto carbonate reservoirs surface was studied. Owing to the fact that the salinity and temperature in underground carbonate reservoirs were high during the EOR process, it is vital to study the salinity effect and temperature effect on surfactant adsorption. In this study, different surfactants species, temperature and salinity adsorption onto carbonate reservoirs were studied. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Linear models, and the first three models fitting effect were good. The results showed that cationic surfactants adsorption quantity was higher than anionic surfactants, and the non-ionic surfactants adsorption quantity was the lowest. When the temperature increased, the surfactants adsorption would decrease, because the adsorption process was exothermic process, and increasing temperature would inhibit the adsorption. The higher salinity would increase surfactants adsorption because higher salinity could compress electric double layer. In order to decrease surfactants adsorption, SiO2 nanoparticles and TiO2 nanoparticles were added to surfactants solutions, and then surfactants could adsorb onto nanoparticles surface, then the steric hindrance between surfactant molecules would increase, which could decrease surfactants adsorption. Contact angle results indicated that surfactants adsorption made the carbonate reservoir wettability alteration. In the end, surfactants (with or without SiO2 nanoparticles) adsorption onto carbonate reservoirs mechanism were studied by molecular dynamics simulation. The simulation results indicated that the surfactants molecules could adsorb onto SiO2 nanoparticles surface, and then the surfactants adsorption quantity onto carbonate rocks would decrease, which was in accordance with the experiments results.

4.
Nanomaterials (Basel) ; 11(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34361220

RESUMO

In this study, surfactants were used to enhance heavy oil-solid separation, and a detailed mechanism was explored by SARA (saturates, aromatics, resins, asphaltenes) analysis, element analysis, AFM measurement, and molecular dynamic simulation. Surfactants could effectively decrease oil/solid interaction force and then oil-solid separation would be enhanced. The oil-solid interactive force was in relation to surfactants concentration, pH value, asphaltene content, and salinity. The molecular dynamics simulation results show that the dissociation of saturated hydrocarbon, aromatic hydrocarbon, resin, and asphaltene (SARA) on carbonate minerals is gradually weakened for all surfactants. In the process of molecular dynamics simulation of surfactant stripping SARA, firstly, the surfactant molecules adsorb on the surface of SARA molecules. After that, the surfactant peels SARA molecules off the surface of calcite under the influence of molecular thermal motion. In this process, surfactant molecules will not be directly adsorbed on the surface of trace minerals. The results of energy/temperature balance indicated that saturates, aromatics and resins could remain stable when the molecular dynamics simulation time reached 2000 ps with the phenomenon that saturates, aromatics could liberate from minerals totally within 2000 ps. The molecular dynamics simulation of asphaltenes will not liberate from calcite surface within 6000 ps, meanwhile, they could not reach the energy balance/energy balance within 6000 ps. The functional groups of surfactant molecules would have interactions with the SARA functional group, resulting in different dissociation effects of SARA. The results of molecular dynamics simulation are consistent with the experiment results. The separation effect of saturated hydrocarbon, aromatic hydrocarbon, resin, and asphaltene in five kinds of surfactants were different. The molecular dynamic simulation results were in accordance with the SARA analysis.

5.
Nanomaterials (Basel) ; 11(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34361235

RESUMO

In recent years, unconventional oils have shown a huge potential for exploitation. Abundant reserves of carbonate asphalt rocks with a high oil content have been found; however, heavy oil and carbonate minerals have a high interaction force, which makes oil-solid separation difficult when using traditional methods. Although previous studies have used nanofluids or surfactant alone to enhance oil recovery, the minerals were sandstones. For carbonate asphalt rocks, there is little research on the synergistic effect of nanofluids and surfactants on heavy oil recovery by hot-water-based extraction. In this study, we used nanofluids and surfactants to enhance oil recovery from carbonate asphalt rocks synergistically based on the HWBE process. In order to explore the synergistic mechanism, the alterations of wettability due to the use of nanofluids and surfactants were studied. Nanofluids alone could render the oil-wet calcite surface hydrophilic, and the resulting increase in hydrophilicity of calcite surfaces treated with different nanofluids followed the order of SiO2 > MgO > TiO2 > ZrO2 > γ-Al2O3. The concentration, salinity, and temperature of nanofluids influenced the oil-wet calcite wettability, and for SiO2 nanofluids, the optimal nanofluid concentration was 0.2 wt%; the optimal salinity was 3 wt%; and the contact angle decreased as the temperature increased. Furthermore, the use of surfactants alone made the oil-wet calcite surface more hydrophilic, according to the following order: sophorolipid (45.9°) > CTAB (49°) > rhamnolipid (53.4°) > TX-100 (58.4°) > SDS (67.5°). The elemental analysis along with AFM and SEM characterization showed that nanoparticles were adsorbed onto the mineral surface, resulting in greater hydrophilicity of the oil-wet calcite surface, and the roughness was related to the wettability. Surfactant molecules could aid in the release of heavy oil from the calcite surface, which exposes the uncovered calcite surface to its surroundings; additionally, some surfactants adsorbed onto the oil-wet calcite surface, and the combined role made the oil-wet calcite surface hydrophilic. In conclusion, the study showed that hybrid nanofluids showed a better effect on wettability alteration, and the use of nanofluids and surfactants together resulted in synergistic alteration of oil-wet calcite surface wettability.

6.
Materials (Basel) ; 11(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513618

RESUMO

In this study, SHT (switchable-hydrophilicity triethylamine, [Et3NH]·[HCO3]) has been synthesized and instrumentally characterized by Fourier transform⁻infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (NMR). The operational synthesis conditions of SHT were optimized and determined at 25 °C, Et3N/H2O volume ratio of 1:2 and CO2 injection rate at 300 mL/min. When it was used to extract heavy oil from unconventional oil ore, it was found that it could break maltenes-in-water emulsions. When asphaltenes were present in the oil phase, it was observed that SHT could cooperate with asphaltenes. These results indicated that SHT works with asphaltenes, leading to synergistic effects in stabilizing oil⁻water (o/w) emulsions.

7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(2): 593-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27209775

RESUMO

In the near-infrared spectroscopy, the Forward Interval Partial Least Squares (FiPLS) and Backward Interval Partial Least Squares (BiPLS) are commonly used modeling methods, which are based on the wavelength variable selection. These methods are usually of high prediction accuracy, but are strongly characteristic of greedy search, which causes that the intervals selected are not good enough to indicate the analyte information. To solve the problem, a spectral characteristic intervals selection strategy (FB-iPLS) based on the combination of FiPLS and BiPLS is proposed. On the basis of spectral segmentation, both FiPLSs are used to select useful intervals, and BiPLS is used to delete useless intervals, so as to perform the selection and deletion of the characteristic variables alternatively, which conducts a two-way choice of the target characteristic variables, and is used to improve the robustness of the model. The experiments on determining the ethanol concentration in pure water are conducted by modeling with FiPLS, BiPLS and the proposed method. Since different size of intervals will affect the result of the model, the experiments here will also examine the model results with different intervals of these three models. When the spectrum is divided into 60 segments, the FB-iPLS method obtains the best prediction performance. The correlation coefficients (r) of the calibration set and validation set are 0.967 7 and 0.967 0 respectively, and the cross-validation root mean square errors (RMSECV) are 0.088 8 and 0.057 1, respectively. Compared with FiPLS and BiPLS, the overall prediction performance of the proposed model is better. The experiments show that the proposed method can further improve the predictive performance of the model by resolving the greedy search feature against BiPLS and FiPLS, which is more efficient for and representative of the selection of characteristic intervals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...